Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(3): 1913-1916, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448682

ABSTRACT

A double layered plasmonic device based on transferring technique with polystyrene nano-beads is analyzed and demonstrated to increase the sensing characteristics of plasmonic sensor system. The double layered plasmonic devices are calculated using the three-dimensional finite-difference time-domain method for the width and thickness of the nano-hole structures. The double layered plasmonic devices with different diameters of the Au nano-hole are fabricated by transferring method with commercially available chloromethyl latex with a diameter of 0.42 µm. The optimum sensing characteristic of the proposed plasmonic device is obtained with the film and the hole thickness of 15 and 15 nm in the 246 nm wide nano-hole size. The best sensitivity of the proposed plasmonic sensor is 67.7 degree/RIU when the sensitivity of the conventional plasmonic sensor is 42.2 degree/RIU.

2.
Nano Lett ; 16(11): 6738-6745, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27704850

ABSTRACT

The electromechanical properties of ternary InAsP nanowires (NWs) were investigated by applying a uniaxial tensile strain in a transmission electron microscope (TEM). The electromechanical properties in our examined InAsP NWs were governed by the piezoresistive effect. We found that the electronic transport of the InAsP NWs is dominated by space-charge-limited transport, with a I ∞ V2 relation. Upon increasing the tensile strain, the electrical current in the NWs increases linearly, and the piezoresistance gradually decreases nonlinearly. By analyzing the space-charge-limited I-V curves, we show that the electromechanical response is due to a mobility that increases with strain. Finally, we use dynamical measurements to establish an upper limit on the time scale for the electromechanical response.

SELECTION OF CITATIONS
SEARCH DETAIL
...