Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chemosphere ; 354: 141675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484989

ABSTRACT

This study aimed to investigate adsorption effects of electron scavengers (H2O2 and S2O82-) on oxidation performance for mineralization of sulfamethoxazole (SMX) in radiation treatment using catalysts (Al2O3, TiO2). Hydrogen peroxide (H2O2, 1 mM) as an electron scavenger showed weak adsorption onto catalysts (0.012 mmol g-1-Al2O3 and 0.004 mmol g-1-TiO2, respectively), leading to an increase in TOC removal efficiency of SMX within the absorbed dose of 30 kGy by 12.3% with Al2O3 and by 8.0% with TiO2. The weak adsorption of H2O2 onto the catalyst allowed it to act as an electron scavenger, promoting indirect decomposition reactions. However, high adsorption of S2O82- (1 mM) onto Al2O3 (0.266 mmol g-1-Al2O3) showed a decrease in TOC removal efficiency of SMX from 76.2% to 30.2% within the absorbed dose of 30 kGy. The high adsorption of S2O82- onto the catalyst inhibited direct decomposition reaction by reducing adsorption of SMX on catalysts. TOC removal efficiency for Al2O3 without electron scavengers in an acidic condition was higher than that in a neutral or alkaline condition. However, TOC removal efficiency for Al2O3 with S2O82- was higher in a neutral condition than in other pH conditions. This indicates that the pH of a solution plays a critical role in the catalytic oxidation performance by determining surface charges of catalysts and yield of reactive radicals produced from water radiolysis. In the radiocatalytic system, H2O2 enhances the oxidation performance of catalysts (Al2O3 and TiO2) over a wide pH range (3-11). Meanwhile, S2O82- is not suitable with Al2O3 in acidic conditions because of its strong adsorption onto Al2O3 in this study.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Sulfamethoxazole/chemistry , Hydrogen Peroxide/chemistry , Adsorption , Electrons , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Catalysis
2.
Plants (Basel) ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836116

ABSTRACT

Policosanols (PCs) are long-chain linear aliphatic alcohols that are present in the primary leaves of cereal crops, such as barley and wheat, sugar cane wax, and beeswax. PCs have been used as a nutraceutical for improving hyperlipidemia and hypercholesterolemia. However, the PC content in mutant wheat lines has not been investigated. To select highly functional wheat sprouts with a high content of PCs in wheat mutant lines developed via gamma-irradiated mutation breeding, we cultivated the sprouts of wheat mutant lines in a growth chamber with white LED light (6000 K) and analyzed the PC content in these samples using GC-MS. We studied the PC content in 91 wheat sprout samples: the original variety (Woori-mil × D-7; WS01), commercially available cv. Geumgang (WS87) and cv. Cheongwoo (WS91), and mutant lines (WS02-WS86 and WS88-WS90) developed from WS01 and WS87. Compared to WS01, 18 mutant lines exhibited a high total PC content (506.08-873.24 mg/100 g dry weight). Among them, the top 10 mutant lines were evaluated for their PC production after cultivating under blue (440 nm), green (520 nm), and red (660 nm) LED light irradiation; however, these colored LED lights reduced the total PC production by 35.8-49.7%, suggesting that the cultivation with white LED lights was more efficient in promoting PCs' yield, compared to different LED lights. Therefore, our findings show the potential of radiation-bred wheat varieties as functional foods against hyperlipidemia and obesity and the optimal light conditions for high PC production.

3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409225

ABSTRACT

Lysophosphatidylserine (LysoPS) is an amphipathic lysophospholipid that mediates a broad spectrum of inflammatory responses through a poorly characterized mechanism. Because LysoPS levels can rise in a variety of pathological conditions, we sought to investigate LysoPS's potential role in airway epithelial cells that actively participate in lung homeostasis. Here, we report a previously unappreciated function of LysoPS in production of a mucin component, MUC5AC, in the airway epithelial cells. LysoPS stimulated lung epithelial cells to produce MUC5AC via signaling pathways involving TACE, EGFR, and ERK. Specifically, LysoPS- dependent biphasic activation of ERK resulted in TGF-α secretion and strong EGFR phosphorylation leading to MUC5AC production. Collectively, LysoPS induces the expression of MUC5AC via a feedback loop composed of proligand synthesis and its proteolysis by TACE and following autocrine EGFR activation. To our surprise, we were not able to find a role of GPCRs and TLR2, known LyoPS receptors in LysoPS-induced MUC5AC production in airway epithelial cells, suggesting a potential receptor-independent action of LysoPS during inflammation. This study provides new insight into the potential function and mechanism of LysoPS as an emerging lipid mediator in airway inflammation.


Subject(s)
ErbB Receptors , MAP Kinase Signaling System , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Inflammation/metabolism , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Mucin 5AC/metabolism , Respiratory Mucosa/metabolism
4.
Environ Res ; 174: 152-159, 2019 07.
Article in English | MEDLINE | ID: mdl-31077990

ABSTRACT

In this research, the concentrations of six heavy metals (Zn, Pb, Ni, Fe, Cd, and Cr) in electronic cigarette (EC) solutions were determined to assess their association with EC use patterns. To this end, their contents were analyzed under three conditions: (1) ECL I: EC liquid was directly taken from EC liquid bottles as purchased from retail, (2) ECL II: EC liquid simply stored in the EC clearomizer for a certain period was collected without any puffing, and (3) ECL III: EC liquid remaining in the EC clearomizer after puffing. Each of all three types of electronic cigarette liquid (ECL) samples selected in this study was analyzed after being stored for up to seven days (at elapsed intervals of 1, 3, and 7 days). Zn and Pb were detected in all types of samples while Cd was all below method detection limit (MDL). Fe, Ni, and Cr were generally below MDL in ECL I, while it was not the case for ECL II and III samples. Especially, Zn, Pb, and Ni levels increased significantly with the use of EC. If the consumption of EC causes alterations in elemental content, such changes can be assessed in terms of ratio values such as "after/before use". The maximum ratio values for each target, when assessed using ECL III samples, were seen in the following order: 463 (Zn) > 315 (Ni) > 131 (Fe) > 47.9 (Cr) > 36.0 (Pb). As such, EC use is clearly demonstrated as the transfer route of heavy metals.


Subject(s)
Electronic Nicotine Delivery Systems , Environmental Monitoring , Metals, Heavy
5.
Environ Res ; 165: 267-273, 2018 08.
Article in English | MEDLINE | ID: mdl-29734027

ABSTRACT

This study investigated the emission characteristics of glass particles resulting from smoking electronic cigarettes (ECs). First, the most suitable filter for the collection of glass particles was explored by examining the performance (reliability) of various types of filters. A polycarbonate filter was determined as the optimum choice to collect glass particles in EC aerosol. A cartomizer was filled with EC refill solution composed of an equal volume of propylene glycol (PG) and vegetable glycol (VG). To simulate the potential conditions for glass particle emission, EC vaped aerosols were collected at three distinctive puffing intervals: (1) 0-10 puffs, (2) 101-110 puffs, and (3) 201-210 puffs (flow rate of 1 L min-1, 2 s per puff, and 10 puffs per sample). Glass particles were observed as early as after 100 times puffing from certain products, while after 200 from others. Thus, glass particles were generated by increasing the number of puffs and usage of the EC cartomizer. The analysis of glass particles collected onto polycarbonate filters by scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) confirmed the presence of glass particles in samples collected after puffing 100-200 times. The study demonstrated that the possibility of glass particle emissions from the EC device increased considerably with the increasing number of total puffs.


Subject(s)
Air Pollutants/analysis , Electronic Nicotine Delivery Systems , Glass/analysis , Vaping , Aerosols/analysis , Reproducibility of Results
6.
Environ Res ; 165: 81-90, 2018 08.
Article in English | MEDLINE | ID: mdl-29684738

ABSTRACT

The concentrations and fluxes of airborne phthalates were measured from five types of polyvinyl chloride (PVC) consumer products (vinyl flooring, wallcovering, child's toy, yoga mat, and edge protector) using a small chamber (impinger) system. Airborne phthalates released from each of those PVC samples were collected using sorbent (Tenax TA) tubes at three temperature control intervals (0, 3, and 6 h) under varying temperature conditions (25, 40, and 90 °C). A total of 11 phthalate compounds were quantified in the five PVC products examined in this study. To facilitate the comparison of phthalate emissions among PVC samples, their flux values were defined for total phthalates by summing the average fluxes of all 11 phthalates generated during the control period of 6 h. The highest flux values were seen in the edge protector sample at all temperatures (0.40 (25 °C), 9.65 (40 °C), and 75.7 µg m-2 h-1 (90 °C)) of which emission was dominated by dibutyl isophthalate. In contrast, the lowest fluxes were found in wallcovering (0.01 (25 °C) and 0.05 µg m-2 h-1 (40 °C)) and child's toy (0.23 µg m-2 h-1 (90 °C)) at each temperature level. The information regarding phthalate composition and emission patterns varied dynamically with type of PVC sample, controlled temperature, and duration of control.


Subject(s)
Air Pollutants , Floors and Floorcoverings , Phthalic Acids , Polyvinyl Chloride , Air Pollutants/analysis , Air Pollutants/chemistry , Environmental Monitoring , Humans , Phthalic Acids/analysis , Phthalic Acids/chemistry , Polyvinyl Chloride/chemistry , Temperature
7.
Environ Monit Assess ; 189(7): 317, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28589458

ABSTRACT

To develop accurate quantitation methods for two major permanent gases, N2 and O2, a series of calibration experiments were carried out using a gas chromatograph (GC)/barrier discharge ionization detector (BID) equipped with a large-volume injection (LVI) system. To this end, gaseous working standards (WSs) diluted with helium gas were prepared at ten different concentration levels representing three different concentration ranges (in ppm) in 1-L polyester aluminum (PEA) bags ((1) low, 209~2090 (O2) and 791~7910 (N2); (2) moderate, 2090 ~ 20,900 (O2) and 7910~79,100 (N2); and (3) high, 20,900~209,000 (O2) and 79,100~791,000 (N2)). Cross-calibration experiments for each individual WS were carried out using the loop injection system with four different capacities (0.01, 0.5, 1, and 10 mL). The calibration results were then evaluated with respect to key variables including loop capacity, concentration, and mass quantity. Accordingly, we observed the optimal performance of the BID in terms of sensitivity and linearity (R 2 > 0.98) when the WS of the moderate concentration range was analyzed with the small loop (0.01 and 0.5 mL). The method detection limit (MDL) values of the four loop sizes (between 0.01 and 10 mL) were 7~500 ng for O2 (38.4~557 ppm) and 24~2230 ng for N2 (195~2105 ppm).


Subject(s)
Chromatography, Gas , Environmental Monitoring/instrumentation , Nitrogen/analysis , Oxygen/analysis , Calibration , Gases/analysis , Nitrogen/chemistry , Oxygen/chemistry
8.
Sci Rep ; 7: 45677, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28361993

ABSTRACT

The adsorption properties of various sorbent materials were investigated to assess the factors affecting biases in the sorbent tube (ST) sampling of airborne phthalates. The recovery of phthalates was assessed critically in relation to four key sampling parameters: (1) three types of sorbent materials (quartz wool (QW), glass wool (GW), and quartz wool plus Tenax TA (QWTN)), (2) the concentration level of phthalate standards, (3) purge flow rate, and (4) purge volume for analysis based on a 'sorbent tube-thermal desorption-gas chromatography-mass spectrometry (ST-TD-GC-MS)' system. Among these parameters, the type of ST was the most influential in determining the recovery of phthalates. For a given ST type, the recovery of phthalates tends to improve with increases in the concentration level of standards. In case of QW and QWTN tubes, the breakthrough of phthalates was not observed up to the maximum purge volume (100 L) tested in this work; however, in case of GW, the recovery decreased drastically to 60% even at a purge volume of 1 L for low molecular weight phthalates. The results of our study demonstrate that accurate analysis of airborne phthalates can be achieved through proper control of key sampling parameters, particularly the choice of sorbent material.

9.
Environ Technol ; 38(4): 506-516, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27292582

ABSTRACT

The characteristics of malodor released from piggery excreta samples were investigated by measuring their emission concentrations both before and after such treatments as composting or aeration from field sites. These samples were then collected from field sites and brought into the lab for analysis with the aid of the dynamic flux chamber method. The dominating compounds in the emissions were reduced sulfur compounds, phenol, and indole. The results were examined in terms of two key odor indices: odor intensity (OI) and odor activity values (OAVs), after being grouped by some criteria. When the odor contribution in the composting facility was assessed by the OAV value, methanethiol (53.1%), trimethylamine (TMA) (25.5%), and skatole (10.1%) were dominant in the pretreatment facilities, while skatole (64.7%) and p-cresol (27.9%) in the post-treatment specimens. Likewise, in the liquid treatment facility, hydrogen sulfide (47.4%), p-cresol (26.9%), and skatole (20.2%) were dominant in the pretreatment, while only p-cresol (73.6%) in the post-treatment. In comparison to the composting facility, the liquid treatment facility proved to be more efficient in the treatment of diverse hog-barn-related odorants.


Subject(s)
Air Pollutants/analysis , Odorants/analysis , Waste Disposal, Fluid/methods , Aldehydes/analysis , Animal Husbandry , Animals , Indoles/analysis , Nitrogen Compounds/analysis , Phenol/analysis , Republic of Korea , Sulfur Compounds/analysis , Swine
10.
Anal Chim Acta ; 944: 29-36, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27776636

ABSTRACT

In this study, a novel quantitation method was developed to facilitate the simple and effective sampling and analysis of phthalates in air based on a sorbent tube-thermal desorption-gas chromatography-mass spectrometry system combination. The performance of the thermal desorption-based analysis was assessed using three different sorbent combinations [1]: quartz wool (QW) [2], glass wool (GW), and [3] quartz wool plus Tenax TA (QWTN) in terms of relative recovery in reference to a direct injection method. There was no significant difference in the average recovery rate for seven target phthalates based on sorbent tube type (QW, 70.2 ± 4.28; GW, 73.2 ± 8.8; and QWTN, 72.5 ± 5.02%). However, the recovery rate of phthalates in each sorbent tube type was distingusihed by physicochemical properties of the target compound (e.g., molecular weight and boiling point). The recovery rate of the QW tube was high for dimethyl phthalate and diethyl phthalate compared to other sorbent tubes, while that of the GW tube exhibited greater values for dibutyl phthalate, benzyl butyl phthalate, di(2-ethylhexyl) adipate, di(2-ethylhexyl) phthalate, and di-n-octyl phthalate. The simple sorbent tube-thermal desorption approach is feasible for the quantitation of seven phthalates present at 0.45-24.5 ng m-3 levels in actual air samples (20 L).

11.
Sci Total Environ ; 548-549: 472-478, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26888605

ABSTRACT

In this study, the odorant emission rates from excretory wastes collected in sealed containers from a large swine facility were determined offsite in a laboratory using both raw slurry from ([1] windowless pigpen (WP) and [2] open pigpen (OP)) and treated waste samples ([3] composting facility (CF) and [4] slurry treatment facility (SF)). The emission rates of up to 41 volatile odorants were measured for 100g waste samples (of all four types) in a 0.75L impinger with an air change rate of 8h(-1). The initial emission rates (mgkg(-1)·h(-1)) for the most dominant species from each waste type can be summarized as: (1) WP: NH3 (16.3) and H2S (0.54); (2) OP: H2S (1.78), NH3 (1.69), and p-cresol (0.36); (3) CF: NH3 (7.04), CH3SH (0.30), and DMS (0.12); and (4) SF: NH3 (11.7), H2S (11.7), and p-cresol (0.25). Accordingly, the emission factors for the key odorant (mE, kg·pig(-1))) for fattening pigs in the WP and OP facilities of S. Korea were extrapolated as 3.46 (NH3) and 0.38 (H2S), respectively. The emission factors were estimated assuming exponentially decaying emission rates and slurry production rates obtained from the literature.


Subject(s)
Air Pollutants/analysis , Animal Husbandry , Environmental Monitoring , Odorants/analysis , Waste Disposal, Fluid/methods , Animals , Republic of Korea , Swine
12.
J Chromatogr A ; 1429: 369-73, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26748866

ABSTRACT

In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde).


Subject(s)
Aerosols/chemistry , Aldehydes/analysis , Chemistry Techniques, Analytical/methods , Electronic Nicotine Delivery Systems , Acetaldehyde/analysis , Acetone/analysis , Aerosols/analysis , Benzaldehydes/analysis , Chemistry Techniques, Analytical/standards , Formaldehyde/analysis , Phenylhydrazines/analysis
13.
J Environ Manage ; 166: 484-92, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26562781

ABSTRACT

The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg(-1) Pa(-1))), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs.


Subject(s)
Air Pollutants/chemistry , Sulfur Compounds/chemistry , Zeolites/chemistry , Adsorption , Air Pollutants/isolation & purification , Disulfides/chemistry , Hydrogen Sulfide/chemistry , Spectroscopy, Fourier Transform Infrared , Sulfhydryl Compounds/chemistry , Sulfides/chemistry , Sulfur Dioxide/chemistry , X-Ray Diffraction
14.
Anal Chim Acta ; 738: 51-8, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22790700

ABSTRACT

Air samples containing sulfur compounds are often collected and stored in sample bags prior to analysis. The storage stability of six gaseous sulfur compounds (H(2)S, CH(3)SH, DMS, CS(2), DMDS and SO(2)) was compared between two different bag materials (polyvinyl fluoride (PVF) and polyester aluminum (PEA)) at five initial concentrations (1, 10, 100, 1000, and 10,000ppb). The response factors (RF) of these samples were determined after storage periods of 0, 1, and 3 days by gas chromatography-pulsed flame photometric detector (GC-PFPD) combined with an air server (AS)/thermal desorber (TD) system. Although concentration reduction occurred more rapidly from samples of the high concentration standards (1000 and 10,000ppb), such trends were not evident in their low concentration counterparts (1, 10, and 100ppb). As such, temporal changes in RF values and the associated loss rates of most sulfur gases were greatly affected by their initial concentration levels. Moreover, the storability of oxidized sulfur compound (SO(2)) was greatly distinguished from that of reduced sulfur compounds (RSCs), as the former almost disappeared in the PVF bag even after one day. The results of our study confirm that storability of gaseous sulfur species is affected interactively by such variables as initial gas concentration level, bag material type, and oxidation status with the associated reactivity.

15.
Anal Chim Acta ; 712: 162-7, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22177080

ABSTRACT

Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar(®)) bags for gaseous VOC sampling. Eight VOC standards (benzene, toluene, p-xylene, styrene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol) were placed into each bag at storage times of 0, 2, and 3 days prior to analyses by gas chromatography/mass spectrometry (GC/MS). From each bag representing each storage day, samples of 3 different mass loadings were withdrawn and analyzed to derive response factors (RF) of each chemical between the slope of the GC response (y-axis) vs. loaded mass (x-axis). The relative recoveries (RR) of VOC, if derived by dividing RF value of a given storage day by that of 0 day, varied by time, bag type, and VOC type. If the RR values after three days are compared, those of methyl isobutyl ketone were the highest with 96 (PVF) and 99% (PEA); however, the results of isobutyl alcohol were highly contrasting between the two bags with 31 and 94%, respectively. Differences in RR values between the two bag types increased with storage time, such that RR of PEA bags (88±10%) were superior to those of PVF bags (73±22%) after three days, demonstrating that VOC in PEA bags were more stable than in PVF bags.


Subject(s)
Aluminum/chemistry , Gas Chromatography-Mass Spectrometry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Volatile Organic Compounds/chemistry , Gases/chemistry , Odorants , Polyethylene Terephthalates , Polyvinyls/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...