Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomol Ther (Seoul) ; 31(1): 1-15, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36579459

ABSTRACT

Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.

2.
Biomol Ther (Seoul) ; 30(6): 616-624, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36305295

ABSTRACT

Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.

3.
J Nanosci Nanotechnol ; 20(11): 7018-7026, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32604551

ABSTRACT

Diesel fuel can produce higher concentrations of H2 and CO gases than other types of hydrocarbon fuels via a reforming reaction for solid oxide fuel cells (SOFCs). However, in addition to sulfur compounds and aromatic hydrocarbons in diesel fuel are a major cause of catalyst deactivation. To elucidate the phenomenon of catalyst deactivation in the presence of an aromatic hydrocarbon, dodecane (C12H26) and hexadecane (C16H34) were blended with an aromatic hydrocarbon such as 1-methylnaphthalene (C11H10) to obtain a diesel surrogate fuel. The experiments were performed for autothermal reforming of the diesel surrogate fuel under conditions of S/C = 1.17, O2/C = 0.24, 750°C and GHSV= 12,000 h-1. Three Ni-Al-based catalysts with 10 wt% (N10A), 30 wt% (N30A) and 50 wt% (N50A) of NiO were prepared via the polymer modified incipient method. Whereas all of the Ni-Al-based catalysts were deactivated with increasing reaction time, the catalysts with greater Ni contents tended to maintain their catalytic performance for a longer time. Correlation between the catalytic performances and Ni content were analyzed by temperature-programmed reduction (TPR), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX), Brunauer-Emmett-Teller(BET) analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Also, we concluded that ethylene (C2H4), which was detected by gas chromatography-mass spectrometry (GC-MS), was the fundamental cause of deactivation of the Ni-Al-based catalysts by accelerating the deposition of wire-type carbon on the catalytic surface.

4.
J Nanosci Nanotechnol ; 20(11): 7169-7174, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32604577

ABSTRACT

SnO2 thin-film gas sensors were easily created using the ion sputtering technique. The as-deposited SnO2 thin films consist of a tetragonal SnO2 phase and densely packed nanosized grains with diameters of approximately 20-80 nm, which are separated by microcracks. The as-deposited SnO2 thin film is well crystallized, with a dense columnar nanostructure grown directly onto the alumina material and the Pt electrodes. The grain size and thickness of SnO2 thin films are easily controlled by varying the sputtering time of the ion coater. The responses of the SnO2 thin-film sensors decrease as the SnO2 film thickness is increased, indicating that a negative association exists between the sensor response and the SnO2 film thickness due to gas diffusion from the surface. The SnO2 thin-film sensor, which was created by ion sputtering for 10 min, shows an excellent sensor response (Ra/Rg where Ra is the electric resistance under air and Rg is the electric resistance under the test gas) for detecting 1 ppm H2S at 350°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...