Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Pulse ; 6(5): 20-5, 2015.
Article in English | MEDLINE | ID: mdl-26414789

ABSTRACT

When asked about our weight, most of us can name a figure based on prior knowledge. And while stepping on a scale gives us the ability to know that exact number and track it routinely, it does not provide insights into our body?s composition. This, at the basic level, refers to proportions of fat and lean or fat-free mass (FFM) that comprise the human body. Conventionally, the body mass index (BMI), which is the ratio of body weight in kilograms to the square of its height in meters, and anthropometric parameters like waist circumference, waist-to-hip ratio, and skinfold thickness have been used to estimate the level of fatness. In fact, BMI is the de facto marker for stratifying individuals into underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight (25-29.9 kg/m2), and obese (>30 kg/m2) categories. Nonetheless, these metrics are limited in precisely characterizing individuals by percentages of body fat and muscle mass, particularly in epidemiological studies where these proportions vary across age, sex, and ethnic groups. Of note is also how, solely on the basis of BMI, a physically fit individual may be classified as overweight due to having a higher proportion of lean body mass, which outweighs fat. This highlights the importance of body composition in weight tracking and management.


Subject(s)
Body Composition/physiology , Electric Impedance , Electrodiagnosis/instrumentation , Adult , Electrodiagnosis/methods , Female , Humans , Male , Reproducibility of Results
2.
Sensors (Basel) ; 15(9): 22151-66, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26364636

ABSTRACT

Current bioelectric impedance analysis (BIA) systems are often large, cumbersome devices which require strict electrode placement on the user, thus inhibiting mobile capabilities. In this work, we developed a handheld BIA device that measures impedance from multiple frequencies (5 kHz~200 kHz) with four contact electrodes and evaluated the BIA device against standard body composition analysis systems: a dual-energy X-ray absorptiometry (DXA) system (GE Lunar Prodigy, GE Healthcare, Buckinghamshire, UK) and a whole-body BIA system (InBody S10, InBody, Co. Ltd, Seoul, Korea). In the study, 568 healthy participants, varying widely in body mass index, age, and gender, were recruited at two research centers: the Samsung Medical Center (SMC) in South Korea and the Pennington Biomedical Research Center (PBRC) in the United States. From the measured impedance data, we analyzed individual body fat and skeletal muscle mass by applying linear regression analysis against target reference data. Results indicated strong correlations of impedance measurements between the prototype pathways and corresponding InBody S10 electrical pathways (R = 0.93, p < 0.0001). Additionally, body fat estimates from DXA did not yield significant differences (p > 0.728 (paired t-test), DXA mean body fat 29.45 ± 10.77 kg, estimated body fat 29.52 ± 12.53 kg). Thus, this portable BIA system shows a promising ability to estimate an individual's body composition that is comparable to large stationary BIA systems.


Subject(s)
Anthropometry/instrumentation , Body Composition/physiology , Electric Impedance/therapeutic use , Obesity/therapy , Smartphone , Telemedicine/instrumentation , Adult , Anthropometry/methods , Equipment Design , Female , Humans , Male , Middle Aged , Regression Analysis , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...