Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923547

ABSTRACT

The tip and die for manufacturing multi-lumen catheter tubes should be designed considering the flow velocity of the molten polymer and the deformation of the final extruded tube. In this study, to manufacture non-circular double-lumen tubes for peripherally inserted central catheters (PICCs), three types of tip and die structures are proposed. The velocity field and swelling effect when the circular tip and die (CTD) are applied, which is the commonly used tip and die structure, are analyzed through numerical calculation. To resolve the wall and rib thickness and ovality issues, the ellipse tip and die (ETD) and sub-path tip and die (STD) were proposed. In addition, based on the results of numerical analysis, the tip and die structures were manufactured and used to perform extrusion. Finally, we manufactured tubes that satisfied the target diameter, ovality, wall, and rib thickness using the newly proposed STD.

2.
Polymers (Basel) ; 12(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707865

ABSTRACT

As the market for minimally invasive surgery has grown, the demand for high-precision and high-performance catheters has increased. Catheters for the diagnosis and treatment of cardiovascular or cerebrovascular disease mainly use a braided wire tube with a polymer inner liner and outer jacket to improve the pushability and trackability. The outer jacket should have an accurate inner and outer diameter and while maintaining a wall thickness of 150 µm or less. In this study, we designed and manufactured a tip and die capable of extruding an outer jacket with a wall thickness of 150 µm or less using a medical thermoplastic elastomer for manufacturing 8Fr (2.64 mm diameter) thin-walled tubes. The ovality and inner/outer diameters of the tube were studied according to changes in the screw speed (mass flow rate), puller speed, air pressure applied to the lumen, and distance between the quench and head, which are the main variables of microextrusion processes. The screw speed (mass flow rate), puller speed, and air pressure affected the inner/outer diameter of the tube, with screw speed and puller speed having the largest influence on diameter. The air pressure and distance between quench and head had the greatest influence on ovality. The results show the effect of different processing parameters on the characteristics of the extruded tube, which will help to establish a stable extrusion process for the manufacture of outer jackets for braided catheter shafts.

SELECTION OF CITATIONS
SEARCH DETAIL
...