Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 28(12): 2528-2533, 2022 12.
Article in English | MEDLINE | ID: mdl-36417964

ABSTRACT

We detected arenavirus RNA in 1.6% of 1,047 bats in Brazil that were sampled during 2007-2011. We identified Tacaribe virus in 2 Artibeus sp. bats and a new arenavirus species in Carollia perspicillata bats that we named Tietê mammarenavirus. Our results suggest that bats are an underrecognized arenavirus reservoir.


Subject(s)
Arenavirus , Chiroptera , Animals , Arenavirus/genetics , Brazil/epidemiology
2.
Front Vet Sci ; 8: 645517, 2021.
Article in English | MEDLINE | ID: mdl-34950723

ABSTRACT

Meningoencephalitis of unknown origin (MUO) describes a group of meningoencephalitides in dogs with a hitherto unknown trigger. An infectious agent has been suggested as one possible trigger of MUO but has not been proven so far. A relatively new method to screen for viral RNA or DNA is next-generation sequencing (NGS) or deep sequencing. In this study, a metagenomics analysis of the virome in a sample is analyzed and scanned for known or unknown viruses. We examined fresh-frozen CSF of 6 dogs with MUO via NGS using a modified sequence-independent, single-primer amplification protocol to detect a possible infectious trigger. Analysis of sequencing reads obtained from the six CSF samples showed no evidence of a virus infection. The inability to detect a viral trigger which could be implicated in the development of MUO in the examined population of European dogs, suggests that the current techniques are not sufficiently sensitive to identify a possible virus infection, that the virus is already eliminated at the time-point of disease outbreak, the trigger might be non-infectious or that there is no external trigger responsible for initiating MUO in dogs.

3.
Emerg Infect Dis ; 27(11): 2889-2903, 2021 11.
Article in English | MEDLINE | ID: mdl-34463240

ABSTRACT

Intense transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa might promote emergence of variants. We describe 10 SARS-CoV-2 lineages in Benin during early 2021 that harbored mutations associated with variants of concern. Benin-derived SARS-CoV-2 strains were more efficiently neutralized by antibodies derived from vaccinees than patients, warranting accelerated vaccination in Africa.


Subject(s)
COVID-19 , SARS-CoV-2 , Benin/epidemiology , Humans , Mutation
4.
PLoS One ; 13(8): e0201221, 2018.
Article in English | MEDLINE | ID: mdl-30086178

ABSTRACT

Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated.


Subject(s)
Sperm Whale , Animal Migration , Animals , Autopsy/veterinary , Diet/veterinary , England , Environmental Monitoring , Male , Mortality , Netherlands , North Sea , Sperm Whale/microbiology , Sperm Whale/parasitology , Sperm Whale/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...