Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 232: 116350, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37290619

ABSTRACT

The performance of a moving bed biofilm reactor (MBBR) depends largely on the type of biofilm carrier used. However, how different carriers affect the nitrification process, particularly when treating anaerobic digestion effluents, is not completely understood. This study aimed to evaluate the nitrification performance of two distinct biocarriers in MBBRs over a 140-d operation period, with a gradually decreasing hydraulic retention time (HRT) from 20 to 10 d. Reactor 1 (R1) was filled with fiber balls, whereas a Mutag Biochip was used for reactor 2 (R2). At an HRT of 20 d, the ammonia removal efficiency of both reactors was >95%. However, as the HRT was reduced, the ammonia removal efficiency of R1 gradually declined, ultimately dropping to 65% at a 10-d HRT. In contrast, the ammonia removal efficiency of R2 consistently exceeding 99% throughout the long-term operation. R1 exhibited partial nitrification, whereas R2 exhibited complete nitrification. Analysis of microbial communities showed that the abundance and diversity of bacterial communities, particularly nitrifying bacteria such as Hyphomicrobium sp. And Nitrosomonas sp., in R2 was higher than that in R1. In conclusion, the choice of biocarrier significantly impact the abundance and diversity of microbial communities in MBBR systems. Therefore, these factors should be closely monitored to ensure the efficient treatment of high-strength ammonia wastewater.


Subject(s)
Microbiota , Nitrification , Ammonia , Biofilms , Anaerobiosis , Bioreactors/microbiology , Bacteria , Waste Disposal, Fluid
2.
Bioresour Technol ; 338: 125500, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34265595

ABSTRACT

Biogas plants treating food waste (FW) often experience feed load and composition fluctuations. In Korea, vegetable waste from the preparation of kimchi comprises over 20% of the total FW production during the Kimjang season. The large production of Kimjang waste (KW) can cause mechanical and operational problems in FW digesters. This study investigated the long-term effectiveness of bioaugmentation with rumen culture (38 months) in an anaerobic reactor co-digesting FW with varying amounts of KW. The bioaugmented reactor maintained better and stabler performance under recurrent fluctuations in feed characteristics than a non-bioaugmented control reactor, particularly under high ammonia conditions. Bioaugmentation increased microbial diversity, thereby improving the resilience of the microbial community. Some augmented microorganisms, especially Methanosarcina, likely played an important role in it. The results suggest that the proposed bioaugmentation strategy may provide a means to effectively treat and valorize KW-and potentially other seasonal lignocellulosic wastes-by co-digestion with FW.


Subject(s)
Refuse Disposal , Rumen , Anaerobiosis , Animals , Bioreactors , Food , Methane , Republic of Korea , Vegetables
3.
Bioresour Technol ; 304: 123023, 2020 May.
Article in English | MEDLINE | ID: mdl-32088631

ABSTRACT

This study investigated the single-stage partial nitritation and anammox (S-PNA) treatment of low-strength ammonia wastewater (≤140 mg NH4+-N/L). Upflow dual-bed gel-carrier reactor (UDGR) with polyvinyl alcohol cryogel biocarriers, developed in this study, was employed for the anammox biomass enrichment from conventional activated sludge and subsequent S-PNA experiments. Anammox biomass was successfully enriched from conventional activated sludge. The enriched anammox carriers were inoculated together with gel carriers containing nitrifying sludge into the S-PNA reactors. S-PNA activity developed rapidly, and the nitrogen removal efficiency and rate reached up to 90.1% (with complete ammonia removal) and 0.15 kg N/m3⋅d, respectively, under low nitrogen loading conditions (0.10-0.17 kg N/m3⋅d). The microbial community structure changed significantly while adapting to anammox and S-PNA conditions. Anammox was likely driven solely by a Candidatus Jettenia population accounting for ≤49.4% of bacterial 16S rRNA genes. The results demonstrate that the UDGR-based S-PNA is suitable for treating low-strength wastewater.


Subject(s)
Ammonia , Wastewater , Bioreactors , Nitrogen , Oxidation-Reduction , RNA, Ribosomal, 16S , Sewage
4.
Waste Manag ; 78: 509-520, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559939

ABSTRACT

This study compared single- versus two-phase systems for semi-continuous anaerobic digestion of food waste without pH control at varying organic loading rates (OLRs). The methanogenic reactors of both systems required trace element supplementation for stable operation at 3.0 g VS (volatile solids)/L∙d or higher OLRs. Under trace-element supplemented conditions, both systems achieved stable and efficient performance at OLRs up to 4.0 g VS/L∙d. The two-phase system outperformed the single-phase system at 1.0-4.0 g VS/L∙d OLRs, but it failed at an OLR of 5.0 g VS/L∙d. Meanwhile, the single-phase system maintained the stable performance and reached its maximum methane production at this OLR. These results suggest that a single-phase configuration is more advantageous for robust treatment of food waste without pH control at high organic and hydraulic loads. Hydrogenotrophic methanogens dominated the methanogen community throughout the experiment in both systems. Microbial community structure shifts correlated with reactor operation and performance characteristics.

5.
Bioresour Technol ; 193: 53-61, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117235

ABSTRACT

Rice-washing drainage (RWD), a strong organic wastewater, was anaerobically treated using an upflow filter filled with blast-furnace slag. The continuous performance of the reactor was examined at varying hydraulic retention times (HRTs). The reactor achieved 91.7% chemical oxygen demand removal (CODr) for a 10-day HRT (0.6 g COD/Ld organic loading rate) and maintained fairly stable performance until the HRT was shortened to 2.2 days (CODr > 84%). Further decreases in HRT caused process deterioration (CODr < 50% and pH < 5.5 for a 0.7-day HRT). The methane production rate increased with decreasing HRT to reach the peak level for a 1.3-day HRT, whereas the yield was significantly greater for 3.4-day or longer HRTs. The substrate removal and methane production kinetics were successfully evaluated, and the generated kinetic models produced good performance predictions. The methanogenic activity of the reactor likely relies on the filter biofilm, with Methanosaeta being the main driver.


Subject(s)
Anaerobiosis/physiology , Oryza/microbiology , Sewage/microbiology , Steel/chemistry , Wastewater/microbiology , Wine/microbiology , Biofilms/growth & development , Biological Oxygen Demand Analysis/methods , Bioreactors/microbiology , Euryarchaeota/metabolism , Kinetics , Methane/metabolism , Models, Theoretical , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...