Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 360: 142450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801902

ABSTRACT

Herein, we successfully synthesized Hf/Zr co-doping on Fe2O3 nanorod photocatalyst by a hydrothermal process and quenching methods. The synergistic roles of Hf and Zr double-doping on the bacteria inactivation test and decomposition of organic pollutants were investigated in detail for the 1 wt% CoOx loaded Hf/Zr-Fe2O3 NRs and CuOx/CoOx loaded Hf/Zr-Fe2O3 NRs photocatalyst. Initially, the rod-like porous morphology of the Hf/Zr-doped Fe2O3 NRs was produced via a hydrothermal method at various Hf co-doping (0, 2, 4, 7 and 10)%. Further, CoOx and CuOx loaded by a wet impregnation approach on the Hf/Zr-Fe2O3 NRs and a highly photoactive Hf(4)/Zr-Fe2O3 [CoOx/CuOx] NRs photocatalyst were developed. After the Hf(4)/Zr-Fe2O3 [CoOx/CuOx] NRs photocatalyst treatment, the Bio-TEM imagery of bacterial cells showed extensive morphological deviations in cell membranes. Hf(4)/Zr-Fe2O3 NR achieved 84.1% orange II degradation upon 3 h illumination, which is higher than that of Hf-Fe2O3 and Zr-Fe2O3 (68.7 and 73.5%, respectively). Additionally, the optimum sample, Hf(4)/Zr-Fe2O3 [CoOx/CuOx] photocatalyst, exhibited 95.5% orange II dye degradation after light radiation for 3 h. Optimized Hf(4)/Zr-Fe2O3 [CoOx/CuOx] catalysts exhibited 99.9% and 99.7% inactivation of E. coli and S. aureus with 120 min, respectively. Further, scavenger experiments revealed that the electrons are the primary responsible species for photocatalytic kinetics. This work will provide a rapid method for the development of high photocatalytic performance materials for bacterial disinfection and organic degradation.


Subject(s)
Anti-Bacterial Agents , Copper , Ferric Compounds , Nanotubes , Zirconium , Zirconium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Nanotubes/chemistry , Ferric Compounds/chemistry , Copper/chemistry , Copper/pharmacology , Hafnium/chemistry , Oxides/chemistry , Cobalt/chemistry , Photochemical Processes
2.
J Cell Physiol ; 236(3): 1854-1865, 2021 03.
Article in English | MEDLINE | ID: mdl-32700766

ABSTRACT

Cinchonine (CN) has been known to exert antimalarial, antiplatelet, and antiobesity effects. It was also recently reported to inhibit transforming growth factor ß-activated kinase 1 (TAK1) and protein kinase B (AKT) through binding to tumor necrosis factor receptor-associated factor 6 (TRAF6). However, its role in bone metabolism remains largely unknown. Here, we showed that CN inhibits osteoclast differentiation with decreased expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. Immunoblot and quantitative real-time polymerase chain reaction analysis as well as the reporter assay revealed that CN inhibits nuclear factor-κB and activator protein-1 by regulating TAK1. CN also attenuated the activation of AKT, cyclic AMP response element-binding protein, and peroxisome proliferator-activated receptor-γ coactivator 1ß (PGC1ß), an essential regulator of mitochondrial biogenesis. Collectively, these results suggested that CN may inhibit TRAF6-mediated TAK1 and AKT activation, which leads to downregulation of NFATc1 and PGC1ß resulting in the suppression of osteoclast differentiation. Interestingly, CN not only inhibited the maturation and resorption function of differentiated osteoclasts but also promoted osteoblast differentiation. Furthermore, CN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting its therapeutic potential for treating inflammation-induced bone diseases and postmenopausal osteoporosis.


Subject(s)
Cell Differentiation , Cinchona Alkaloids/pharmacology , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis , Proto-Oncogene Proteins c-akt/metabolism , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Cell Differentiation/drug effects , Cinchona Alkaloids/chemistry , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation/pathology , Lipopolysaccharides , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Nuclear Proteins/metabolism , Osteoclasts/drug effects , Osteogenesis/drug effects , Ovariectomy , RANK Ligand/pharmacology , RAW 264.7 Cells , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism
3.
Acta Pharm Sin B ; 10(3): 462-474, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140392

ABSTRACT

Bone diseases such as osteoporosis and periodontitis are induced by excessive osteoclastic activity, which is closely associated with inflammation. Benzydamine (BA) has been used as a cytokine-suppressive or non-steroidal anti-inflammatory drug that inhibits the production of pro-inflammatory cytokines or prostaglandins. However, its role in osteoclast differentiation and function remains unknown. Here, we explored the role of BA in regulating osteoclast differentiation and elucidated the underlying mechanism. BA inhibited osteoclast differentiation and strongly suppressed interleukin-1ß (IL-1ß) production. BA inhibited osteoclast formation and bone resorption when added to bone marrow-derived macrophages and differentiated osteoclasts, and the inhibitory effect was reversed by IL-1ß treatment. The reporter assay and the inhibitor study of IL-1ß transcription suggested that BA inhibited nuclear factor-κB and activator protein-1 by regulating IκB kinase, extracellular signal regulated kinase and P38, resulting in the down-regulation of IL-1ß expression. BA also promoted osteoblast differentiation. Furthermore, BA protected lipopolysaccharide- and ovariectomy-induced bone loss in mice, suggesting therapeutic potential against inflammation-induced bone diseases and postmenopausal osteoporosis.

4.
FASEB J ; 33(2): 2026-2036, 2019 02.
Article in English | MEDLINE | ID: mdl-30216110

ABSTRACT

Many bone diseases, such as osteoporosis and rheumatoid arthritis, are attributed to an increase in osteoclast number or activity; therefore, control of osteoclasts has significant clinical implications. This study shows how skullcapflavone II (SFII), a flavonoid with anti-inflammatory activity, regulates osteoclast differentiation, survival, and function. SFII inhibited osteoclastogenesis with decreased activation of MAPKs, Src, and cAMP response element-binding protein (CREB), which have been known to be redox sensitive. SFII decreased reactive oxygen species by scavenging them or activating nuclear factor-erythroid 2-related factor 2 (Nrf2), and its effects were partially reversed by hydrogen peroxide cotreatment or Nrf2 deficiency. In addition, SFII attenuated survival, migration, and bone resorption, with a decrease in the expression of integrin ß3, Src, and p130 Crk-associated substrate, and the activation of RhoA and Rac1 in differentiated osteoclasts. Furthermore, SFII inhibited osteoclast formation and bone loss in an inflammation- or ovariectomy-induced osteolytic mouse model. These findings suggest that SFII inhibits osteoclastogenesis through redox regulation of MAPKs, Src, and CREB and attenuates the survival and resorption function by modulating the integrin pathway in osteoclasts. SFII has therapeutic potential in the treatment and prevention of bone diseases caused by excessive osteoclast activity.-Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., Jeong, W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling.


Subject(s)
Flavonoids/toxicity , Integrins/metabolism , MAP Kinase Signaling System/drug effects , Osteoclasts/metabolism , Osteolysis/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Survival/drug effects , Disease Models, Animal , Female , Male , Mice , NF-E2-Related Factor 2/metabolism , Osteoclasts/pathology , Osteolysis/chemically induced , Osteolysis/pathology
5.
Free Radic Biol Med ; 112: 191-199, 2017 11.
Article in English | MEDLINE | ID: mdl-28774817

ABSTRACT

Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1ß that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast.


Subject(s)
Apoptosis/drug effects , Diterpenes/pharmacology , Osteoclasts/drug effects , Osteogenesis/drug effects , Phenylpropionates/pharmacology , RANK Ligand/antagonists & inhibitors , Reactive Oxygen Species/antagonists & inhibitors , Animals , Apoptosis/genetics , Bone Resorption , Caspases/genetics , Caspases/metabolism , Cell Differentiation , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Female , Gene Expression Regulation , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction , fas Receptor/genetics , fas Receptor/metabolism
6.
Free Radic Biol Med ; 101: 384-392, 2016 12.
Article in English | MEDLINE | ID: mdl-27825965

ABSTRACT

Cancer cells have been suggested to be more susceptible to oxidative damages and highly dependent on antioxidant capacity in comparison with normal cells, and thus targeting antioxidant enzymes has been a strategy for effective cancer treatment. Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of sulfinylated peroxiredoxins and thereby reactivates them. In this study we developed a Srx inhibitor, K27 (N-[7-chloro-2-(4-fluorophenyl)-4-quinazolinyl]-N-(2-phenylethyl)-ß-alanine), and showed that it induces the accumulation of sulfinylated peroxiredoxins and oxidative stress, which leads to mitochondrial damage and apoptotic death of cancer cells. The effects of K27 were significantly reversed by ectopic expression of Srx or antioxidant N-acetyl cysteine. In addition, K27 led to preferential death of tumorigenic cells over non-tumorigenic cells, and suppressed the growth of xenograft tumor without acute toxicity. Our results suggest that targeting Srx might be an effective therapeutic strategy for cancer treatment through redox-mediated cell death.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar/drug therapy , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Quinazolines/pharmacology , Reactive Oxygen Species/agonists , beta-Alanine/analogs & derivatives , A549 Cells , Acetylcysteine/pharmacology , Adenocarcinoma, Bronchiolo-Alveolar/metabolism , Adenocarcinoma, Bronchiolo-Alveolar/pathology , Animals , Antineoplastic Agents/chemical synthesis , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Enzyme Inhibitors/chemical synthesis , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Molecular Targeted Therapy , Oxidative Stress/drug effects , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Quinazolines/chemical synthesis , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays , beta-Alanine/chemical synthesis , beta-Alanine/pharmacology
7.
Free Radic Biol Med ; 91: 264-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26721593

ABSTRACT

Recent studies have shown that many types of cancer cells have increased levels of reactive oxygen species (ROS) and enhance antioxidant capacity as an adaptation to intrinsic oxidative stress, suggesting that cancer cells are more vulnerable to oxidative insults and are more dependent on antioxidant systems compared with normal cells. Thus, disruption of redox homeostasis caused by a decline in antioxidant capacity may provide a method for the selective death of cancer cells. Here we show that ROS-mediated selective death of tumor cells can be caused by inhibiting sulfiredoxin (Srx), which reduces hyperoxidized peroxiredoxins, leading to their reactivation. Srx inhibitor increased the accumulation of sulfinic peroxiredoxins and ROS, which led to oxidative mitochondrial damage and caspase activation, resulting in the death of A549 human lung adenocarcinoma cells. Srx depletion also inhibited the growth of A549 cells like Srx inhibition, and the cytotoxic effects of Srx inhibitor were considerably reversed by Srx overexpression or antioxidants such as N-acetyl cysteine and butylated hydroxyanisol. Moreover, Srx inhibitor rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells and significantly suppressed the growth of A549 xenografts without acute toxicity. Our results suggest that Srx might serve as a novel therapeutic target for cancer treatment based on ROS-mediated cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoates/pharmacology , Mitochondria/drug effects , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Oxidation-Reduction , Oxidative Stress/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...