Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1530, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413581

ABSTRACT

Homoeostatic regulation of the acid-base balance is essential for cellular functional integrity. However, little is known about the molecular mechanism through which the acid-base balance regulates cellular responses. Here, we report that bicarbonate ions activate a G protein-coupled receptor (GPCR), i.e., GPR30, which leads to Gq-coupled calcium responses. Gpr30-Venus knock-in mice reveal predominant expression of GPR30 in brain mural cells. Primary culture and fresh isolation of brain mural cells demonstrate bicarbonate-induced, GPR30-dependent calcium responses. GPR30-deficient male mice are protected against ischemia-reperfusion injury by a rapid blood flow recovery. Collectively, we identify a bicarbonate-sensing GPCR in brain mural cells that regulates blood flow and ischemia-reperfusion injury. Our results provide a perspective on the modulation of GPR30 signalling in the development of innovative therapies for ischaemic stroke. Moreover, our findings provide perspectives on acid/base sensing GPCRs, concomitantly modulating cellular responses depending on fluctuating ion concentrations under the acid-base homoeostasis.


Subject(s)
Brain Ischemia , Reperfusion Injury , Stroke , Male , Mice , Animals , Bicarbonates , Calcium/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
FASEB J ; 37(2): e22789, 2023 02.
Article in English | MEDLINE | ID: mdl-36692419

ABSTRACT

Crescent formation is the most important pathological finding that defines the prognosis of nephritis. Although neutrophils are known to play an important role in the progression of crescentic glomerulonephritis, such as anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, the key chemoattractant for neutrophils in ANCA-associated glomerulonephritis has not been identified. Here, we demonstrate that a lipid chemoattractant, leukotriene B4 (LTB4 ), and its receptor BLT1 are primarily involved in disease pathogenesis in a mouse model of immune complex-mediated crescentic glomerulonephritis. Circulating neutrophils accumulated into glomeruli within 1 h after disease onset, which was accompanied by LTB4 accumulation in the kidney cortex, leading to kidney injury. LTB4 was produced by cross-linking of Fc gamma receptors on neutrophils. Mice deficient in BLT1 or LTB4 biosynthesis exhibited suppressed initial neutrophil infiltration and subsequent thrombotic glomerulonephritis and renal fibrosis. Depletion of neutrophils before, but not after, disease onset prevented proteinuria and kidney injury, indicating the essential role of neutrophils in the early phase of glomerulonephritis. Administration of a BLT1 antagonist before and after disease onset almost completely suppressed induction of glomerulonephritis. Finally, we found that the glomeruli from patients with ANCA-associated glomerulonephritis contained more BLT1-positive cells than glomeruli from patients with other etiologies. Taken together, the LTB4 -BLT1 axis is the key driver of neutrophilic glomerular inflammation, and will be a novel therapeutic target for the crescentic glomerulonephritis.


Subject(s)
Glomerulonephritis , Leukotriene B4 , Receptors, Leukotriene B4 , Animals , Mice , Antibodies, Antineutrophil Cytoplasmic , Antigen-Antibody Complex , Chemotactic Factors , Glomerulonephritis/pathology , Neutrophils/pathology , Receptors, Leukotriene B4/metabolism
3.
Biochem Biophys Res Commun ; 582: 49-56, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34689105

ABSTRACT

The efficacy of n-3 polyunsaturated fatty acids (PUFAs) in improving outcomes in a renal ischemia-reperfusion injury (IRI) model has previously been reported. However, the underlying mechanisms remain poorly understood and few reports demonstrate how dietary n-3 PUFAs influence the composition of membrane phospholipids in the kidney. Additionally, it has not been elucidated whether perilla oil (PO), which is mainly composed of the n-3 alpha-linolenic acid, mitigates renal IRI. In this study, we investigated the effect of dietary n-3 PUFAs (PO), compared with an n-6 PUFA-rich soybean oil (SO) diet, on IRI-induced renal insufficiency in a rat model. Levels of membrane phospholipids containing n-3 PUFAs were higher in the kidney of PO-rich diet-fed rats than the SO-rich diet-fed rats. Levels of blood urea nitrogen and serum creatinine were significantly higher in the ischemia-reperfusion group than the sham group under both dietary conditions. However, no significant differences were observed in blood urea nitrogen, serum creatinine, or histological damage between PO-rich diet-fed rats and SO-rich diet-fed rats. In the kidney of PO-rich diet-fed rats, levels of arachidonic acid and arachidonic acid-derived pro-inflammatory lipid mediators were lower than SO-rich diet-fed rats. Eicosapentaenoic acid and eicosapentaenoic acid-derived lipid mediators were significantly higher in the kidney of PO-rich than SO-rich diet-fed rats. These results suggest that dietary n-3 PUFAs alter the fatty acid composition of membrane phospholipids and lipid mediators in the kidney; however, this does not attenuate renal insufficiency or histological damage in a renal IRI model.


Subject(s)
Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Renal Insufficiency/diet therapy , Reperfusion Injury/diet therapy , Soybean Oil/metabolism , Animals , Arachidonic Acid/metabolism , Blood Urea Nitrogen , Creatinine/blood , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Metabolism/drug effects , Male , Phospholipids/metabolism , Plant Oils/chemistry , Rats , Rats, Sprague-Dawley , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Soybean Oil/administration & dosage , Soybean Oil/chemistry , Treatment Failure , alpha-Linolenic Acid/chemistry
4.
FASEB J ; 34(10): 13949-13958, 2020 10.
Article in English | MEDLINE | ID: mdl-32844470

ABSTRACT

Obesity is a health problem worldwide, and brown adipose tissue (BAT) is important for energy expenditure. Here, we explored the role of leukotriene A4 hydrolase (LTA4 H), a key enzyme in the synthesis of the lipid mediator leukotriene B4 (LTB4 ), in diet-induced obesity. LTA4 H-deficient (LTA4 H-KO) mice fed a high-fat diet (HFD) showed a lean phenotype, and bone-marrow transplantation studies revealed that LTA4 H-deficiency in non-hematopoietic cells was responsible for this lean phenotype. LTA4 H-KO mice exhibited greater energy expenditure, but similar food intake and fecal energy loss. LTA4 H-KO BAT showed higher expression of thermogenesis-related genes. In addition, the plasma thyroid-stimulating hormone and thyroid hormone concentrations, as well as HFD-induced catecholamine secretion, were higher in LTA4 H-KO mice. In contrast, LTB4 receptor (BLT1)-deficient mice did not show a lean phenotype, implying that the phenotype of LTA4 H-KO mice is independent of the LTB4 /BLT1 axis. These results indicate that LTA4 H mediates the diet-induced obesity by reducing catecholamine and thyroid hormone secretion.


Subject(s)
Energy Metabolism , Epoxide Hydrolases/metabolism , Obesity/genetics , Thyroid Hormones/blood , Thyrotropin/blood , Adipose Tissue, Brown/metabolism , Animals , Catecholamines/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Epoxide Hydrolases/deficiency , Epoxide Hydrolases/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Phenotype , Receptors, Leukotriene B4/genetics , Receptors, Leukotriene B4/metabolism , Thermogenesis
5.
Int J Mol Sci ; 20(14)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336653

ABSTRACT

Leukotrienes (LTs) are lipid mediators that play pivotal roles in acute and chronic inflammation and allergic diseases. They exert their biological effects by binding to specific G-protein-coupled receptors. Each LT receptor subtype exhibits unique functions and expression patterns. LTs play roles in various allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma), allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis. This review summarizes the biology of LTs and their receptors, recent developments in the area of anti-LT strategies (in settings such as ongoing clinical studies), and prospects for future therapeutic applications.


Subject(s)
Hypersensitivity/etiology , Hypersensitivity/metabolism , Leukotrienes/metabolism , Animals , Biomarkers , Disease Susceptibility , Gene Expression Regulation , Humans , Hypersensitivity/drug therapy , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Leukotrienes/biosynthesis , Metabolic Networks and Pathways , Molecular Targeted Therapy , Receptors, Leukotriene/genetics , Receptors, Leukotriene/metabolism , Signal Transduction
6.
Sci Rep ; 6: 34560, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703200

ABSTRACT

Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection.


Subject(s)
Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Capillary Permeability/drug effects , Endothelial Cells/metabolism , Receptors, Leukotriene B4/metabolism , Streptolysins/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Animals , Bacterial Proteins/toxicity , Endothelial Cells/pathology , Mast Cells/metabolism , Mast Cells/pathology , Mice , Mice, Knockout , Receptors, Leukotriene B4/genetics
7.
Physiol Rep ; 2(7)2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24994892

ABSTRACT

Tubulointerstitial injury is central to the progression of end-stage renal disease. Recent studies have revealed that one of the most investigated uremic toxins, indoxyl sulfate (IS), caused tubulointerstitial injury through oxidative stress and endoplasmic reticulum (ER) stress. Because indole, the precursor of IS, is synthesized from dietary tryptophan by the gut microbiota, we hypothesized that the intervention targeting the gut microbiota in kidney disease with galacto-oligosaccharides (GOS) would attenuate renal injury. After 2 weeks of GOS administration for 5/6 nephrectomized (Nx) or sham-operated (Sham) rats, cecal indole and serum IS were measured, renal injury was evaluated, and the effects of GOS on the gut microbiota were examined using pyrosequencing methods. Cecal indole and serum IS were significantly decreased and renal injury was improved with decreased infiltrating macrophages in GOS-treated Nx rats. The expression levels of ER stress markers and apoptosis were significantly increased in the Nx rats and decreased with GOS. The microbiota analysis indicated that GOS significantly increased three bacterial families and decreased five families in the Nx rats. In addition, the analysis also revealed that the bacterial family Clostridiaceae was significantly increased in the Nx rats compared with the Sham rats and decreased with GOS. Taken altogether, our data show that GOS decreased cecal indole and serum IS, attenuated renal injury, and modified the gut microbiota in the Nx rats, and that the gut microbiota were altered in kidney disease. GOS could be a novel therapeutic agent to protect against renal injury.

8.
Aging Cell ; 13(3): 519-28, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24612481

ABSTRACT

Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age-related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age-related endothelial function, we employed rats systemically overexpressing glyoxalase I (GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid-age (53 weeks old) wild-type, and GLO1 transgenic (WT/GLO1 Tg) rats. Age-related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Age-related impairment of endothelium-dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium-independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid-age WT rats, but not in mid-age GLO1 Tg rats. Age-related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age-related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long-term impact of endothelial dysfunction on vascular aging.


Subject(s)
Cardiovascular Diseases/metabolism , Endothelium, Vascular/physiology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/physiology , Age Factors , Animals , Endothelium, Vascular/metabolism , Glycation End Products, Advanced/metabolism , Humans , Nitric Oxide Synthase Type III/genetics , Oxidative Stress/genetics , Phosphorylation , Rats , Rats, Transgenic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...