Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 99(1): 162, 2015 Jan.
Article in English | MEDLINE | ID: mdl-30699759

ABSTRACT

Sechium edule (Jacq.) Sw. (Cucurbitaceae, chayote, mirliton) is native to Mexico and Central America. Several trials have recently been conducted to determine the ability of chayote cultivars to grow under the climatic and soil conditions of South Korea. In April 2013, chayote plants were observed showing typical symptoms of powdery mildew in a glasshouse in Jeju City, Korea. Powdery mildew colonies were circular to irregular, forming white patches on both sides of the leaves. As the disease progressed, entire leaves were covered with white mycelium, followed by leaf withering and premature senescence. The same symptoms were also found on chayote plants in a polyethylene-film-covered greenhouse in Iksan City, Korea, in 2014. Voucher specimens were deposited in the Korea University Herbarium (KUS-F27289, F27422, F28186). Hyphae were flexuous to straight, branched, septate, and 5 to 7 µm wide. Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were straight, 150 to 240 × 10 to 12 µm and produced three to seven immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, cylindric, and 52 to 85 µm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, measured 27 to 36 × 16 to 23 µm with a length/width ratio of 1.3 to 2.0, and had distinct fibrosin bodies. Simple to forked germ tubes were produced from the lateral position of conidia. No chasmothecia were found. These structures are typical of the powdery mildew Euoidium anamorph of the genus Podosphaera. Dimensions of foot-cells and conidia were within the ranges provided for P. xanthii (Castagne) U. Braun & Shishkoff, and the length/width ratio of conidia, appressorial characteristics, and conidial germination patterns also conformed to the standard description (2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate KUS-F27289 was amplified with primers ITS1 and ITS4 and sequenced directly. The resulting 473-bp sequence was deposited in GenBank (Accession No. KM657960). A GenBank BLAST search of the Korean isolate showed 99% similarity with P. xanthii isolates from cucurbitaceous hosts (e.g., AB774155 to AB774158, AB040321, JQ340082, etc.). Pathogenicity was confirmed through inoculation tests by gently pressing a diseased leaf onto young leaves of three asymptomatic, potted chayote plants. Three non-inoculated plants were used as controls. Plants were maintained in a greenhouse at 24 to 34°C. Inoculated leaves started to develop symptoms after 5 days, whereas the control plants remained symptomless. The pathogenicity test was carried out twice with similar results. Powdery mildews of chayote caused by Podosphaera species have been reported in Australia, South Africa, Portugal, India, China, and the United States (1,3,4). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on chayote in Korea. Since chayote production was only recently started on a commercial scale in Korea, powdery mildew infections may pose a serious threat to the safe production of this vegetable. References: (1) P. Baiswar et al. Australas. Plant Dis. Notes 3:160, 2008. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab. Online publication, ARS, USDA, Retrieved October 4, 2014. (4) R. Singh et al. Plant Dis. 93:1348, 2009.

2.
Plant Dis ; 98(1): 162, 2014 Jan.
Article in English | MEDLINE | ID: mdl-30708612

ABSTRACT

In order to investigate the virus infection rate of commercial freesia cultivars in early February 2013, 19 freesia cultivars showing necrotic purple speckles or streaks on leaves, purple streaks parallel to the midrib, and necrotic speckles on leaves were collected from three different regions (Suwon and Icheon in Gyeonggi Province and Jeonju in North Jeonla Province) and used for virus detection. Nucleic acid extracts were analyzed for detection of major freesia-infecting viruses including Freesia sneak virus (FreSV) by reverse transcription (RT)-PCR with specific primer pairs. The FreSV CP gene was amplified using primer pair FreSV-F (5'-TTAGATAGTGAATCCATAAGCTGC-3') and FreSV-R (5'-ATGTCTGGAAAATACTCCGTCCAA-3'). The approximately 1.3-kb fragment of the FreSV amplified product was cloned and sequenced (GenBank Accession No. KC771891 to 98). The nucleotide sequences of CP gene of FreSV korean isolates showed 99.2 to 99.8% similarity to other FreSV isolates DQ885455, FJ807730, and GU071089, which are registered in GenBank. FreSV was detected from 71.7% of 138 plants tested while the infection rate of Freesia mosaic virus (FreMV) was 34.8%. Neither Bean yellow mosaic virus (BYMV) nor Tobacco rattle virus (TRV) were detected from any plants tested in this study. In certain cultivars, such as 'Bluebau' (II) and 'Pretty women,' most plants planted in the field showed purple streak symptoms on the leaves. In conclusion, FreSV was detected from some symptomatic freesia cultivars showing purple streak or speckles on leaves with or without necrotic spots and necrotic speckles on leaves. FreSV is currently widespread in Korea and some freesia plants were mixed infected with FreMV. FreSV has been occurring in the Netherlands for over 40 years (2). It is a plant virus in the family Ophioviridae and Ophiovirus genus. Once it occurs in freesia plantation fields, eradication is almost impossible because FreSV is transmitted by zoospores of Olpidium brassicae, which is a soilborne root-infecting fungus (3). Resting spores of O. brassicae can remain dormant in the soil and can be infective for 20 years (1). To produce virus-free freesia plants, growers should consider whether or not their fields are contaminated with O. brassicae carrying FreSV. To our knowledge, this is the first report of FreSV in freesia plants in Korea. References: (1) R. N. Campbell. Can. J. Bot. 63:2288, 1985. (2) Y. Koot et al. Tijdschrift over Plantenziekten 60:157, 1954. (3) H. J. M. van Dorst. Neth. J. Plant Pathol. 81:45, 1975.

3.
Plant Dis ; 97(11): 1514, 2013 Nov.
Article in English | MEDLINE | ID: mdl-30708493

ABSTRACT

In March 2013, papaya (Carica papaya L. cv. Sunrise) plants growing in polyethylene-film-covered greenhouses in Agricultural Research Center for Climate Change located in Jeju City, Korea, were observed severely affected by a powdery mildew. Symptoms appeared as circular to irregular white patches on both sides of the leaves. As the disease progressed, the plants were covered with dense masses of the spores, eventually causing senescence and withering of leaves. Voucher specimens were deposited in the Korea University Herbarium (KUS). Hyphae were flexuous to straight, branched, septate, and 5 to 8 µm wide. Conidiophores were 110 to 250 × 10 to 12.5 µm and produced 2 to 5 immature conidia in chains with a crenate outline followed by 2 to 3 cells. Foot-cells of conidiophores were straight, cylindric, slightly constricted at the basal septum, and 55 to 110 µm long. Conidia were hyaline, ellipsoid-ovoid, measured 22 to 38 × 18 to 21 µm with a length/width ratio of 1.2 to 1.8, and had distinct fibrosin bodies. Chasmothecia were scattered or partly clustered, dark brown, spherical, 80 to 100 µm in diameter, and each contained a single ascus. Appendages were mycelioid, 1- to 5-septate, brown at the base and becoming paler. Asci were sessile, 72 to 87 × 52 to 68 µm, had a terminal oculus of 17 to 23 µm wide, and contained 8 ascospores, each 17 to 23 × 12.5 to 15 µm. The morphological characteristics and measurements were consistent with those of Podosphaera xanthii (Castagne) U. Braun & Shishkoff (1). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of KUS-F27269 was amplified with the primers ITS5/P3 and sequenced (3). The resulting 443 bp sequence was deposited in GenBank (Accession No. KF111806). The Korean isolate showed >99% similarity with those of many P. xanthii isolates including an isolate on papaya from Taiwan (GU358450). Pathogenicity was confirmed through inoculation tests by gently pressing a diseased leaf onto young leaves of three asymptomatic, potted seedlings (cv. Sunrise). Three non-inoculated seedlings were used as control. Inoculated plants were isolated from non-inoculated plants in separate rooms in a greenhouse at 26 to 30°C. Inoculated leaves developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on the inoculated leaves was identical morphologically to that observed on the original diseased leaves, fulfilling Koch's postulates. Powdery mildews of papaya caused by Podosphaera species including P. caricae-papayae have been reported in North America, South America, Hawaii, Africa, Ukraine, Australia, New Zealand, the Cook Islands, India, Thailand, Taiwan, and Japan (2,4). P. caricae-papayae is currently reduced to synonymy with P. xanthii (1). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on papaya in Korea. Though papaya is a minor crop in Korea, producing about 300 M/T annually in greenhouses, powdery mildew disease is a threat to safe production of the fruits. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11, CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, retrieved April 9, 2013. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) J. G. Tsay et al. Plant Dis. 95:1188, 2011.

4.
Plant Dis ; 95(10): 1311, 2011 Oct.
Article in English | MEDLINE | ID: mdl-30731677

ABSTRACT

In April 2007, a bacterial leaf spot of onion (Allium cepa L.) was observed in fields of Namjeju, Jeju Province in Korea with incidence varying from 95 to 100%. Symptoms on leaves included leaf blight and white and brown spots on the leaf surface. Eight bacterial isolates were recovered on trypticase soy agar (TSA) from leaf spot and blight lesions that were surface sterilized in 70% ethanol for 1 min. The isolates were fluorescent on King's B agar and gram-negative, aerobic rods with one to three polar flagella. All isolates belonged to P. syringae (LOPAT) group Ia (+, -, -, -, +) (1). The gyrB, rpoD (2), and rpoB regions (4) of the isolates and reference strain Pseudomonas syringae pv. porri CFBP 1908PT (=BC2583) were partially sequenced using reported primers (2,4). The rpoB region (1,119 bp) of the isolates (GenBank Accession Nos. JF719311-JF719318 for rpoB) shared 100% identity with P. syringae pv. porri CFBP 1908PT (GenBank Accession No. JF719319). Phylogenetic analysis based on partial sequences of the gyrB (660 bp) and rpoD (590 bp) loci of Pseudomonas spp. available in the GenBank (2,4), the reference strain P. syringae pv. porri CFBP 1908PT, and the field isolates was conducted using Jukes-Cantor model in MEGA Version 4.1 (3). The isolates and reference strain P. syringae. pv. porri CFBP 1908PT clustered in one group (GenBank Accession Nos. JF719293-JF719300 for gyrB; JF719302-JF719309 for rpoD). On the basis of phenotypic and pathological characteristics and the sequences, the eight isolates were identified as P. syringae pv. porri. Pathogenicity was evaluated on 3-week-old onion plants (cv. Marushino 330) by spot and spray inoculation. Bacteria were grown on TSA for 24 h at 28°C. Five microliters of bacterial suspension in sterile distilled water (1 × 106 CFU/ml) were spot inoculated on pinpricked positions of five leaves for each isolate and incubated in humid plastic boxes at 27°C. Spot-inoculated surfaces turned white 2 days after inoculation, followed by brownish discoloration. A bacterial suspension in sterile distilled water (100 ml at 1 × 106 CFU/ml) was sprayed onto three plants for each isolate. Plants were maintained in a greenhouse at 18 to 27°C and 80% relative humidity. Isolates induced identical symptoms on all inoculated plants 2 weeks after spray inoculation as those originally observed on onion in the fields. Bacteria were reisolated 3 weeks after inoculation from diseased lesions surface sterilized in 70% ethanol for 1 min and the identity of the reisolated bacteria confirmed by analyzing the sequences of rpoD gene (2). No symptoms were noted on intact plants inoculated with sterilized distilled water. To our knowledge, this is the first report of bacterial leaf spot of onion caused by P. syringae pv. porri in Korea. The disease is expected to have a significant economic impact on onion culture in the fields of Jeju Province in Korea. References: (1) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (2) H. Sawada et al. J. Mol. Evol. 49:627, 1999. (3) K. Tamura et al. Mol. Biol. Evol. 24:1596, 2007. (4) L. Tayeb et al. Res. Microbiol. 156:763, 2005.

SELECTION OF CITATIONS
SEARCH DETAIL
...