Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(23): 4908-4919, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37733800

ABSTRACT

PURPOSE: To explore whether specific triple-negative breast cancer (TNBC) molecular subtypes are predictive for a benefit from maintenance low-dose cyclophosphamide and methotrexate (CM) in the adjuvant IBCSG 22-00 phase III clinical trial. EXPERIMENTAL DESIGN: RNA sequencing was performed on a selection of 347 TNBC formalin-fixed paraffin-embedded (FFPE) tumor samples following a case-cohort-like sampling. TNBC subtypes were computed on gene expression data. The association between TNBC subtypes and treatment outcome was assessed using a Cox proportional-hazards interaction test. RESULTS: Immunomodulatory (IM) and basal-like/immune activated (BLIA) molecular subtypes showed a significant survival benefit when treated with low-dose CM [disease-free survival (DFS): HR, 0.5; 95% confidence interval (CI), 0.28-0.89; Pinteraction = 0.018 and HR, 0.49; 95% CI, 0.27-0.9; Pinteraction = 0.021]. Moreover, a high expression of regulatory T-cell immune signature was associated with a better prognosis in the CM arm, in line with a potential immunomodulating role of cyclophosphamide. In contrast, a worse outcome was observed in tumors with a mesenchymal (M) subtype treated with low-dose CM (DFS: HR, 1.9; 95% CI, 1.2-3; Pinteraction = 0.0044). CONCLUSIONS: Our results show a differential benefit of low-dose CM therapy across different TNBC subtypes. Low-dose CM therapy could be considered as a potential strategy for TNBC tumors with IM subtype in the early-disease setting.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Treatment Outcome , Disease-Free Survival , Prognosis , Chemotherapy, Adjuvant/methods , Cyclophosphamide
2.
Biomolecules ; 10(4)2020 04 05.
Article in English | MEDLINE | ID: mdl-32260546

ABSTRACT

Mesenchymal Stromal Cells (MSC) are multipotent cells characterized by self-renewal, multilineage differentiation, and immunomodulatory properties. To obtain a gene regulatory profile of human MSCs, we generated a compendium of more than two hundred cell samples with genome-wide expression data, including a homogeneous set of 93 samples of five related primary cell types: bone marrow mesenchymal stem cells (BM-MSC), hematopoietic stem cells (HSC), lymphocytes (LYM), fibroblasts (FIB), and osteoblasts (OSTB). All these samples were integrated to generate a regulatory gene network using the algorithm ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks; based on mutual information), that finds regulons (groups of target genes regulated by transcription factors) and regulators (i.e., transcription factors, TFs). Furtherly, the algorithm VIPER (Algorithm for Virtual Inference of Protein-activity by Enriched Regulon analysis) was used to inference protein activity and to identify the most significant TF regulators, which control the expression profile of the studied cells. Applying these algorithms, a footprint of candidate master regulators of BM-MSCs was defined, including the genes EPAS1, NFE2L1, SNAI2, STAB2, TEAD1, and TULP3, that presented consistent upregulation and hypomethylation in BM-MSCs. These TFs regulate the activation of the genes in the bone marrow MSC lineage and are involved in development, morphogenesis, cell differentiation, regulation of cell adhesion, and cell structure.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Mesenchymal Stem Cells/metabolism , Genomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...