Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; 21(3): e202301223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108562

ABSTRACT

Citrus fruits have a thick outer coat which is often discarded due to its low economic value and usually contributes to the waste. So this work focused on exploring the potential pharmacological properties of the discarded citrus peels. In the present study, we extracted the essential oil from peel wastes of Citrus reticulata Blanco (CREO) from the local market. The antioxidant, antibacterial, and anticancer properties of essential oil were evaluated. The CREO exhibited a strong antioxidant property with DPPH radical scavenging, ABTS radical scavenging, H2 O2 radical scavenging, Ferric reducing antioxidant power and for Lipid peroxidation inhibition respectively. Antibacterial properties of CREO was indicated against different pathogenic microbial strains like E. coli, P. aeruginosa, S. aureus, and S. enterica in terms of disc diffusion method and minimum inhibitory concentration (MIC). Further, anticancer properties studied on breast cancer cell lines MCF7 and MDA-MB-231 showed dose-dependent cytotoxicity with IC50 of 56.67±3.12 µg/mL and 76.44±2.53 µg/mL respectively. The GC-MS analysis of CREO revealed the presence of major compounds like S-limonene, α-pinene, α-myrcene, and cis-terpinene which might have played a significant role in strong antioxidant, antibacterial and anticancer properties. The study thus identified the potential health benefits of Citrus reticulata peel waste.


Subject(s)
Citrus , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli , Staphylococcus aureus , Citrus/chemistry , Anti-Bacterial Agents/pharmacology
2.
Antibiotics (Basel) ; 12(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37237843

ABSTRACT

Cinnamomum species are a group of plants belonging to the Lauraceae family. These plants are predominantly used as spices in various food preparations and other culinary purposes. Furthermore, these plants are attributed to having cosmetic and pharmacological potential. Cinnamomum malabatrum (Burm. f.) J. Presl is an underexplored plant in the Cinnamomum genus. The present study evaluated the chemical composition by a GC-MS analysis and antioxidant properties of the essential oil from C. malabatrum (CMEO). Further, the pharmacological effects were determined as radical quenching, enzyme inhibition and antibacterial activity. The results of the GC-MS analysis indicated the presence of 38.26 % of linalool and 12.43% of caryophyllene in the essential oil. Furthermore, the benzyl benzoate (9.60%), eugenol (8.75%), cinnamaldehyde (7.01%) and humulene (5.32%) were also present in the essential oil. The antioxidant activity was indicated by radical quenching properties, ferric-reducing potential and lipid peroxidation inhibition ex vivo. Further, the enzyme-inhibitory potential was confirmed against the enzymes involved in diabetes and diabetic complications. The results also indicated the antibacterial activity of these essential oils against different Gram-positive and Gram-negative bacteria. The disc diffusion method and minimum inhibitory concentration analysis revealed a higher antibacterial potential for C. malabatrum essential oil. Overall, the results identified the predominant chemical compounds of C. malabatrum essential oil and its biological and pharmacological effects.

3.
Molecules ; 27(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296712

ABSTRACT

Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H2O2 scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.46 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC50 = 41.79 ± 1.07, MDAMB231 IC50 = 55.37 ± 2.11µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.


Subject(s)
Artemisia , Artemisinins , Aldehyde Reductase , alpha-Amylases , alpha-Glucosidases , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Artemisia/chemistry , Cytokines , Ethanol , Flavonoids , Hydrogen Peroxide , L-Iditol 2-Dehydrogenase , Lipopolysaccharides , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Molecules ; 27(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268557

ABSTRACT

Infectious diseases and their vectors have remained a concern for human population from their historical origin. Microbial pathogens have also emerged as a potent threat to the healthcare systems even in developed countries. Essential oils remain a less explored method for infectious disease control; besides, the ultrasound-assisted extraction (UAE) of essential oil production has emerged as promising source of bioactive volatiles over conventional methods. This study analyzed the possible use of UAE- Essential oils (EOs) from different species of Ocimum plants (Ocimum basilicum (OB), O. gratissimum (OG), O. tenuiflorum (OT), and O. canum (OC)) in the management of microbial pathogens and mosquito larval control. The antibacterial activity was estimated in terms of a disc diffusion assay and minimum inhibitory concentrations against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enteritidis. The larvicidal property was found using three important mosquito vectors and the LC50 value was determined. Furthermore, antioxidant and anti-inflammatory properties were estimated in terms of radical scavenging activities and the inhibition of lipoxygenase enzyme activity. The EOs exhibited significant DPPH radical scavenging (high in OG), hydrogen-peroxide scavenging (OB) and lipoxygenase inhibition (OB). The antibacterial activity was high in OB and OG (p < 0.05) and the larvicidal activity was of higher sensitivity against Aedis and Culex, whereas Armigeres was more resistant. However, no sign of toxicity in the Allium cepa model or non-targeted organism Guppy fishes was observed. Overall, the UAE extracted Ocimum essential oils were found to be effective against various human pathogenic microbial organisms, with OB and OG being highly active. Likewise, the EOs was also able to induce mortality in the larval forms of various mosquito vectors.


Subject(s)
Oils, Volatile
5.
Drug Chem Toxicol ; 45(4): 1716-1722, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33307839

ABSTRACT

Borassus flabellifer L., belonging to the Arecaceae family, is less explored for its nutritional and biological properties. The plant parts such as the tender kernel, tender water, Borassus flabellifer sap, and haustorium are consumed by various communities in India. The present study first time analyzed the cytoprotective and anti-inflammatory properties of Borassus flabellifer haustorium extract (BHE). The protective effect of BHE was estimated in the normal intestinal epithelial cell (IEC-6) against the pro-oxidant insults induced by hydrogen peroxide (H2O2) and malondialdehyde (MDA). Further, the change in redox status was estimated in terms of antioxidant enzyme activities or the oxidative stress markers. The anti-inflammatory potential of BHE was analyzed in macrophage cells (Raw 264.7) stimulated by lipopolysaccharide (LPS). BHE had a total polyphenols and flavonoids content of 37.92 ± 4.03 mg GAE and 7.02 ± 0.61 mg QE. The pretreatment with BHE has significantly reduced the cytotoxic effect of H2O2 and MDA (p < 0.01) in IEC-6 cells; restoration of cellular glutathione levels and catalase activity (p < 0.05), with a concomitant reduction in the thiobarbituric acid-reactive substances and conjugated dienes (p < 0.05) maybe the plausible mode of action. Further, H2O2 and MDA induced expression of apoptotic genes caspase 3/7 and apaf-1 was significantly reduced by BHE pretreatment (p < 0.05). Similarly, BHE dose-dependently reduced the LPS (1 µg/mL) induced release of pro-inflammatory cytokines including IL-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) in Raw 264.7 cells. The study concludes that Borassus flabellifer haustorium can be an efficient antioxidant and anti-inflammatory functional food.


Subject(s)
Arecaceae , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cell Death , Hydrogen Peroxide/toxicity , Inflammation/chemically induced , Inflammation/prevention & control , Lipopolysaccharides/toxicity , Plant Extracts/pharmacology , Reactive Oxygen Species
6.
Drug Chem Toxicol ; 45(5): 2269-2275, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34000941

ABSTRACT

Fluoride is the most common cause of drinking water-associated toxicity and is known to induce various metabolic imbalances and dental/skeletal fluorosis. The present study analyzed the protective effect of Borassus flabellifer Linn. haustorium extract (BHE) against fluoride-induced intestinal redox metabolism and apoptosis. The total polyphenols and total flavonoids present in BHE were estimated to be 39.67 ± 5.14 mg gallic acid equivalent/g extract and 8.59 ± 0.74 mg quercetin equivalent. In cultured intestinal epithelial cells (IEC-6), sodium fluoride exposure-induced apoptosis mediated through antioxidant enzyme inhibition and subsequent oxidative damages. Further, there observed an increased expression of caspase-3, caspase-7, and apoptotic protease activating factor-1 (apaf-1) genes, increased cytochrome C release, and caspase 3/7 activity indicating the apoptosis- mediated cell death (p < 0.05). Upon pretreatment with BHE, the cytotoxic effect of fluoride was reduced by decreasing the expression of apoptotic genes and increased the cytochrome release as well as caspase 3/7 activity (p < 0.01). Providing the mechanistic basis, the expression of nuclear factor erythroid 2-related factor-2 (Nrf2)/haeme oxygenase-1 (HO1) gene was increased in the BHE pretreated cells; corroborating to these, there observed increased activity of glutathione biosynthetic enzymes (p < 0.05) and glutathione reductase. Hence, the protective effect of BHE may be mediated through Nrf2-mediated glutathione biosynthesis, the subsequent establishment of redox balance, and inhibition of apoptosis in intestinal epithelial cells.


Subject(s)
Fluorides , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Apoptosis , Caspase 3/metabolism , Epithelial Cells/metabolism , Fluorides/metabolism , Fluorides/toxicity , Glutathione/metabolism , Methanol , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
7.
J Am Nutr Assoc ; 41(6): 587-593, 2022 08.
Article in English | MEDLINE | ID: mdl-34282996

ABSTRACT

AIM: The study was aimed to assess the ability of Borassus flabellifer haustorium methanolic extract (BHE) on de novo glutathione biosynthesis in normal and pro-oxidant exposed cells via Nuclear factor erythroid 2-related factor 2 (Nrf2) and haeme oxygenase-1 (HO1) signaling in 2,2'-Azobis(2-methylpropionamidine) di-hydrochloride (AAPH) induced cytotoxicity in normal intestinal epithelial cells (IEC-6 cells). METHODS: The in vitro antioxidant activity was determined in terms of radical scavenging and ex vivo hemolysis. The cytoprotective effect was studied using AAP H as the alkoxyl radical inducer in IEC-6 cell model. The mechanistic basis of protection is determined by Nrf2/HO1 expression using qPCR. RESULTS: In vitro screening observed DPPH, hydrogen peroxide and ABTS radical scavenging activity for the BHE; further, BHE also protected the oxidative hemolysis in the erythrocytes induced by AAPH. In IEC-6 cells, AAPH treatment significantly reduced the cell viability (p < 0.001) by inducing lipid peroxidation. Further, there observed a significant reduction in the activities of enzymes involved in the de novo glutathione biosynthesis (p < 0.01) and glutathione reductase in these cells. However, pretreatment with BHE (10, 25 and 50 µg/mL) dose-dependently protected from the cytotoxicity of AAPH-derived alkoxyl radicals (p < 0.05); besides, the de novo glutathione biosynthesis and regeneration of GSH from oxidized form was also increased in these cells. In corroboration with the biochemical parameters, the Nrf2/HO1 expression was upregulated by the BHE pretreatment concomitantly reducing the cellular lipid peroxidation products. The improvement glutathione biosynthesis was also observed in BHE alone treated cells. CONCLUSION: The study indicated the potential of methanolic extract of Borassus flabellifer haustorium in enhancing the de novo glutathione biosynthesis in normal and pro-oxidant exposed cells by Nrf2/HO1 dependent manner, concomitantly mitigating the toxicity of AAPH-derived alkoxyl radicals in intestinal epithelial cells.


Subject(s)
Hemolysis , NF-E2-Related Factor 2 , Alcohols , Glutathione/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Animals , Rats , Cell Line
8.
Environ Res ; 202: 111718, 2021 11.
Article in English | MEDLINE | ID: mdl-34297936

ABSTRACT

The essential oil isolated from plants is widely utilized as eco-friendly biocides and antibacterial agents. Curcuma amada, commonly known as mango ginger, is well-known for its applications in the food and aromatics industry for its significant mango-like aroma. The present study compared the different C. amada essential oils prepared by hydrodistillation (CHD), steam distillation (CSD), microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for their chemical composition, antibacterial, larvicidal and insecticidal properties. GC/MS analysis indicated the presence of compounds including α-pinene, ß-myrcene, p-cymene, (Z)-ß-ocimene, Camphor, linalyl acetate, safrole, ar-curcumene, and ß-curcumene in the different C. amada essential oils. The antibacterial activity was observed against different strains of microbes, with a higher efficacy in the essential oils prepared by UAE and MAE methods. Apart from these, the MAE, UAE, CSD, and CHD were also shown to have significantly higher larvicidal activity against Aedes, Culex, and Armigeres species; however, no toxic effect was observed in non-targeted species like fishes and Allium cepa model of genotoxicity. Further, these essential oils were also found to have significant contact and fumigant toxicity as well as repellency against pests of stored grains (Sitophilus and Tribolium). Considering these results, the present study assumes that Curcuma amada essential oils may be a source of ecofriendly insecticides and antibacterial agents.


Subject(s)
Disinfectants , Insecticides , Mangifera , Oils, Volatile , Zingiber officinale , Anti-Bacterial Agents/pharmacology , Curcuma , Oils, Volatile/pharmacology , Rhizome
9.
Environ Res ; 200: 111717, 2021 09.
Article in English | MEDLINE | ID: mdl-34302830

ABSTRACT

Fluoride ions are an important environmental contaminant and pollutant found in a wide variety of environmental conditions. The fluoride in drinking water is evident to induce toxic effects including neurodegeneration, skeletal and dental fluorosis as well as organ damage. Nutraceuticals and functional foods are emerging as possible preventive agents against fluoride toxicity. Hence, the possible use of an emerging functional food-the coconut haustorium is being evaluated against sodium fluoride-induced toxicity in intestinal cells (IEC-6). The cells exposed to fluoride showed significant cell death mediated through the increased lipid peroxidation and glutathione depletion. The glutathione biosynthetic enzymes were inhibited by the exposure to fluoride and the apoptotic genes (caspases 3/7 and apaf-1) were upregulated. The CHE pre-treatment improved the activity of enzymes involved in the de novo biosynthesis of glutathione and subsequently improved the intracellular GSH pool. The improved antioxidant defense was also evident from the reduced expression of apoptotic genes (p < 0.05). Overall, the study concludes that fluoride ions induce oxidative stress-mediated apoptosis in intestinal epithelial cells, via inhibiting glutathione biosynthesis. Methanol extract of coconut haustorium increased glutathione biosynthesis and subsequently prevented fluoride toxicity in IEC-6 cells by virtue of its antioxidant potentials.


Subject(s)
Cocos , Fluorides , Antioxidants , Cocos/metabolism , Epithelial Cells , Fluorides/toxicity , Glutathione/metabolism , Lipid Peroxidation , Methanol , Oxidative Stress , Plant Extracts , Reactive Oxygen Species
10.
Recent Pat Anticancer Drug Discov ; 16(3): 436-444, 2021.
Article in English | MEDLINE | ID: mdl-33797378

ABSTRACT

BACKGROUND: Oxidative stress and inflammation are the predominant cause of chronic diseases, including multiple forms of cancers. Prevention of oxidative stress and inflammation is considered to be a target for preventing these disorders due to their significant roles in various degenerative diseases. Various natural products and plant extracts prevent the process of free radical- induced damages. OBJECTIVE: The present study evaluated the biological properties of Thottea siliquosa, belonging to the family Aristolochiaceae, which is a traditionally used Ayurvedic plant. METHODS: Antioxidant assays carried out were DPPH, FRAP, hydrogen peroxide scavenging, and hemolysis inhibition assay; nitric oxide and lipoxygenase inhibition assays were used for anti-inflammatory studies. Anticancer activity was evaluated using human endometrial and breast cancer cells by MTT assay. Bioactive compounds present in T. siliquosa were identified by LCMS and each was docked with various cancer targets, including EGFR, VEGFR, GST, COX2, and Lipooxygenase. RESULTS: The results of the present study showed antioxidant properties of the methanolic crude extract of T. siliquosa as DPPH radical scavenging (110.40 ± 4.5 µg/mL), FRAP capacity (41.1 ± 6.2), and peroxide scavenging (233.4 ± 14.2 µg/mL). Besides, anti-inflammatory properties were also evident in terms of nitric oxide radical scavenging (28.76± 3.9 µg/mL) and lipoxygenase inhibition (39.2 ± 3.2 µg/mL) assays. In silico analysis confirmed the inhibitory potential of the bioactive compounds of T. siliquosa against cancer drug targets such as EGFR, VEGFR, and inflammatory enzymes cyclooxygenase as well as lipooxygenase. Further, the anticancer activity of the extract has been identified against human endometrial and breast cancer cells. The possible mechanism of anticancer action of the extract is mediated through the apoptosis induction mechanism acting through increased caspase and APAF-1 expressions. CONCLUSION: The study thus concludes that T. siliquosa showed significant antioxidant, anti-inflammatory and anticancer properties. Further studies together with a bioassay-guided fractionation may identify possible bioactive compounds.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Aristolochiaceae , Plant Extracts/pharmacology , Antioxidants/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Computer Simulation , Cyclooxygenase 2/metabolism , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Female , Flavonoids/chemistry , HeLa Cells , Humans , In Vitro Techniques , Lipoxygenase/metabolism , MCF-7 Cells , Molecular Docking Simulation , Phenols/chemistry , Receptors, Vascular Endothelial Growth Factor/metabolism
11.
Curr Protein Pept Sci ; 20(9): 907-917, 2019.
Article in English | MEDLINE | ID: mdl-30727890

ABSTRACT

Glutathione (GSH or reduced glutathione) is a tripeptide of gamma-Glutamyl-cysteinylglycine and the predominant intracellular antioxidant in many organisms including humans. GSH and associated enzymes are controlled by a transcription factor-nuclear factor-2 related erythroid factor-2 (Nrf2). In cellular milieu, GSH protects the cells essentially against a wide variety of free radicals including reactive oxygen species, lipid hydroperoxides, xenobiotic toxicants, and heavy metals. It has two forms, the reduced form or reduced glutathione (GSH) and oxidized form (GSSG), where two GSH moieties combine by sulfhydryl bonds. Glutathione peroxidase (GPx) and glutathione-s-transferase (GST) essentially perform the detoxification reactions using GSH, converting it into GSSG. Glutathione reductase (GR) operates the salvage pathway by converting GSSG to GSH with the expense of NADPH and restores the cellular GSH pool. Hence, GSH and GSH-dependent enzymes are necessary for maintaining the normal redox balance in the body and help in cell survival under stress conditions. In addition, GST removes various carcinogenic compounds offering a chemopreventive property, whereas the GSH system plays a significant role in regulating the cellular survival by offering redox stability in a variety of cancers including prostate, lung, breast, and colon cancer. Studies have also indicated that GSH inhibitors, such as buthionine sulfoximine, improve the chemo-sensitivity in cancer cells. In addition, GSH and dependent enzymes provide a survival advantage for cancer cells against chemotherapeutic drugs and radiotherapy.


Subject(s)
Antioxidants/pharmacology , Carcinogens/pharmacology , Glutathione/pharmacology , Antineoplastic Agents/pharmacology , Biomarkers , Carcinogenesis/drug effects , Chemoprevention , Drug Resistance, Neoplasm , Humans , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...