Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 6(7): 190086, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417715

ABSTRACT

The earliest human graphic productions, consisting of abstract patterns engraved on a variety of media, date to the Lower and Middle Palaeolithic. They are associated with anatomically modern and archaic hominins. The nature and significance of these engravings are still under question. To address this issue, we used functional magnetic resonance imaging to compare brain activations triggered by the perception of engraved patterns dating between 540 000 and 30 000 years before the present with those elicited by the perception of scenes, objects, symbol-like characters and written words. The perception of the engravings bilaterally activated regions along the ventral route in a pattern similar to that activated by the perception of objects, suggesting that these graphic productions are processed as organized visual representations in the brain. Moreover, the perception of the engravings led to a leftward activation of the visual word form area. These results support the hypothesis that these engravings have the visual properties of meaningful representations in present-day humans, and could have served such purpose in early modern humans and archaic hominins.

2.
Brain Struct Funct ; 224(2): 859-882, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30535758

ABSTRACT

We herein propose an atlas of 32 sentence-related areas based on a 3-step method combining the analysis of activation and asymmetry during multiple language tasks with hierarchical clustering of resting-state connectivity and graph analyses. 144 healthy right-handers performed fMRI runs based on language production, reading and listening, both with sentences and lists of over-learned words. Sentence minus word-list BOLD contrast and left-minus-right BOLD asymmetry for each task were computed in pairs of homotopic regions of interest (hROIs) from the AICHA atlas. Thirty-two hROIs were identified that were conjointly activated and leftward asymmetrical in each of the three language contrasts. Analysis of resting-state temporal correlations of BOLD variations between these 32 hROIs allowed the segregation of a core network, SENT_CORE including 18 hROIs. Resting-state graph analysis applied to SENT_CORE hROIs revealed that the pars triangularis of the inferior frontal gyrus and the superior temporal sulcus were hubs based on their degree centrality (DC), betweenness, and participation values corresponding to epicentres of sentence processing. Positive correlations between DC and BOLD activation values for SENT_CORE hROIs were observed across individuals and across regions regardless of the task: the more a SENT_CORE area is connected at rest the stronger it is activated during sentence processing. DC measurements in SENT_CORE may thus be a valuable index for the evaluation of inter-individual variations in language areas functional activity in relation to anatomical or clinical patterns in large populations. SENSAAS (SENtence Supramodal Areas AtlaS), comprising the 32 supramodal sentence areas, including SENT_CORE network, can be downloaded at http://www.gin.cnrs.fr/en/tools/ .


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Functional Laterality/physiology , Language , Speech/physiology , Adult , Brain/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Reading
3.
Neuroimage ; 124(Pt B): 1225-1231, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-25840118

ABSTRACT

We report on a database, named BIL&GIN, designed for investigating the cognitive, behavioral, genetic, and brain morphological/functional correlates of hemispheric specialization. The database contains records from a sample of 453 adult participants enriched in left-handers (45%, N=205) as compared to the general population. For each subject, socio-demographic data, hand and eye laterality, family handedness, and cognitive abilities in the language, motor, visuo-spatial, and numerical domains have been recorded. T1-MRI and DTI data were also acquired, as well as resting-state functional MRI. Task-evoked functional MRI was performed in a sub-sample of 303 subjects (157 left-handers) using a customized functional battery of 16 cognitive tasks exploring the same three cognitive domains. Performances at the tasks executed in the magnet as well as post-acquisition debriefing were recorded. A saliva sample was obtained from the subjects of this sub-sample from which DNA was extracted. The BIL&GIN contains results of imaging data processing for each subject, namely maps of tissue (GM, WM, CSF) probability, cortical thickness, cortical surface, and diffusion parameters as well as regional values of these phenotypes for regions of both AAL and FreeSurfer parcellations. For the subjects who underwent FMRI, individual SPM contrast maps for each of the 8 runs were also calculated and included in the database, as well as corresponding BOLD variations in ROIs of the AAL and AICHA atlases, and Wilke's hemispheric functional lateralization index. The BIL&GIN data sharing is based on a collaborative model.


Subject(s)
Behavior/physiology , Brain/anatomy & histology , Brain/physiology , Cognition/physiology , Databases, Factual , Functional Laterality/physiology , Genetics , Neuroimaging , Diffusion Tensor Imaging , Humans , Image Processing, Computer-Assisted , Information Dissemination , Magnetic Resonance Imaging , Neuropsychological Tests , Quality Control
4.
Front Hum Neurosci ; 9: 5, 2015.
Article in English | MEDLINE | ID: mdl-25705184

ABSTRACT

In right-handers (RH), an increase in the pace of dominant hand movement results in increased ipsilateral deactivation of the primary motor cortex (M1). By contrast, an increase in non-dominant hand movement frequency is associated with reduced ipsilateral deactivation. This pattern suggests that inhibitory processes support right hand dominance in right-handers and raises the issues of whether this phenomenon also supports left hand preference in left-handers (LH), and/or whether it relates to asymmetry of manual ability in either group. Thanks to the BIL&GIN, a database dedicated to the investigation of hemispheric specialization (HS), we studied the variation in M1 activity during right and left finger tapping tasks (FTT) in a sample of 284 healthy participants balanced for handedness. An M1 fMRI localizer was defined for each participant as an 8 mm diameter sphere centered on the motor activation peak. RH exhibited significantly larger deactivation of the ipsilateral M1 when moving their dominant hand than their non-dominant hand. In contrast, LH exhibited comparable ipsilateral M1 deactivation during either hand movement, reflecting a bilateral cortical specialization. This pattern is likely related to left-handers' good performances with their right hand and consequent lower asymmetry in manual ability compared with RH. Finally, inter-individual analyses over the whole sample demonstrated that the larger the difference in manual skill across hands, the larger the difference in ipsilateral deactivation. Overall, we propose that difference in ipsilateral deactivation is a marker of difference in manual ability asymmetry reflecting differences in the strength of transcallosal inhibition when a given hand is moving.

5.
Brain Struct Funct ; 220(2): 729-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24310352

ABSTRACT

This study describes the gyrification patterns and surface areas of Heschl's gyrus (HG) in 430 healthy volunteers mapped with magnetic resonance imaging. Among the 232 right-handers, we found a large occurrence of duplication (64 %), especially on the right (49 vs. 37 % on the left). Partial duplication was twice more frequent on the left than complete duplication. On the opposite, in the right hemisphere, complete duplication was 10 % more frequent than partial duplication. The most frequent inter-hemispheric gyrification patterns were bilateral single HG (36 %) and left single-right duplication (27 %). The least common patterns were left duplication-right single (22 %) and bilateral duplication (15 %). Duplication was associated with decreased anterior HG surface area on the corresponding side, independently of the type of duplication, and increased total HG surface area (including the second gyrus). Inter-hemispheric gyrification patterns strongly influenced both anterior and total HG surface area asymmetries, leftward asymmetry of the anterior HG surface was observed in all patterns except double left HG, and total HG surface asymmetry favored the side of duplication. Compared to right-handers, the 198 left-handers exhibited lower occurrence of duplication, and larger right anterior HG surface and total HG surface areas. Left-handers' HG surface asymmetries were thus significantly different from those of right-handers, with a loss of leftward asymmetry of their anterior HG surface, and with significant rightward asymmetry of their total HG surface. In summary, gyrification patterns have a strong impact on HG surface and asymmetry. The observed reduced lateralization of HG duplications and anterior HG asymmetry in left-handers highlights HG inter-hemispheric gyrification patterns as a potential candidate marker of speech lateralization.


Subject(s)
Auditory Cortex/anatomy & histology , Functional Laterality , Adult , Female , Humans , Magnetic Resonance Imaging , Male
6.
Brain Struct Funct ; 220(3): 1585-99, 2015.
Article in English | MEDLINE | ID: mdl-24638878

ABSTRACT

This study investigates the structure-function relationships between the anatomy of Heschl's gyri (HG) and speech hemispheric lateralization in 281 healthy volunteers (135 left-handers). Hemispheric lateralization indices (HFLIs) were calculated with Wilke's method from the activations obtained via functional magnetic resonance imaging while listening to lists of words (LIST). The mean HFLI during LIST was rightward asymmetrical, and left-handers displayed a trend toward decreased rightward asymmetry. The correlations between LIST BOLD contrast maps and individual HFLIs demonstrated that among the cortical areas showing significant asymmetry during LIST, only phonological regions explained HFLI variability. Significant positive correlations were present among the left HG, supramarginal gyri, and the anterior insula. Significant negative correlations occurred in the mid-part of the right superior temporal sulcus. Left HG had the largest functional activity during LIST and explained 10% of the HFLI variance. There was a strong anatomo-functional link in the HG: duplication was associated with a decrease in both the surface area of the anterior HG and HG functional activity. Participants with a single left HG exhibited leftward anatomical and functional asymmetry of HG, but participants with a left duplication lost either anatomical and/or functional leftward asymmetries. Finally, manual preference was related to HG anatomy, but not to HG functional asymmetries measured during LIST. The anatomical characteristics of left-handers (lower occurrence of right HG duplication and a smaller surface area of the right first HG) thus appeared to be unrelated to variations in speech lateralization with handedness.


Subject(s)
Auditory Cortex/anatomy & histology , Auditory Cortex/physiology , Functional Laterality/physiology , Speech Perception/physiology , Adolescent , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
7.
Neuropsychologia ; 65: 56-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25455569

ABSTRACT

The present study reappraised the relationship between hemispheric specialization strength and cognitive skills in a sample of 297 individuals including 153 left-handers. It additionally assessed the interaction with manual laterality factors, such as handedness, asymmetry of hand motor skills, and familial sinistrality. A Hemispheric Functional Lateralization Index (HFLI) for language was derived from fMRI. Through mixture Gaussian modeling, three types of language hemispheric lateralization were defined: typical (left hemisphere dominance with clear positive HFLI), ambilateral (no dominant hemisphere with HFLI values close to 0), and strongly-atypical (right-hemisphere dominance with clear negative HFLI values). Three cognitive scores were derived from 12 tests covering various aspects of verbal and spatial cognition. Compared to both typical and strongly-atypical participants, those ambilateral for language production had lower performances in verbal and non-verbal domains, indicating that hemispheric specialization and cognitive skills are related in adults. Furthermore, this relationship was independent from handedness and asymmetry for motor skills, as no interaction was observed between these factors. On the other hand, the relationship between familial sinistrality and cognitive skills tended to differ according to language lateralization type. In contrast to previous reports in children, in the present adult population, we found no linear correlation between HFLI and cognitive skills, regardless of lateralization type.


Subject(s)
Functional Laterality/physiology , Language , Psychomotor Performance/physiology , Adult , Female , Functional Laterality/genetics , Humans , Magnetic Resonance Imaging , Male , Motor Skills/physiology , Young Adult
8.
Laterality ; 19(4): 383-404, 2014.
Article in English | MEDLINE | ID: mdl-23745714

ABSTRACT

The relationship between manual laterality and cognitive skills remains highly controversial. Some studies have reported that strongly lateralised participants had higher cognitive performance in verbal and visuo-spatial domains compared to non-lateralised participants; however, others found the opposite. Moreover, some have suggested that familial sinistrality and sex might interact with individual laterality factors to alter cognitive skills. The present study addressed these issues in 237 right-handed and 199 left-handed individuals. Performance tests covered various aspects of verbal and spatial cognition. A principal component analysis yielded two verbal and one spatial factor scores. Participant laterality assessments included handedness, manual preference strength, asymmetry of motor performance, and familial sinistrality. Age, sex, education level, and brain volume were also considered. No effect of handedness was found, but the mean factor scores in verbal and spatial domains increased with right asymmetry in motor performance. Performance was reduced in participants with a familial history of left-handedness combined with a non-maximal preference strength in the dominant hand. These results elucidated some discrepancies among previous findings in laterality factors and cognitive skills. Laterality factors had small effects compared to the adverse effects of age for spatial cognition and verbal memory, the positive effects of education for all three domains, and the effect of sex for spatial cognition.


Subject(s)
Brain/anatomy & histology , Functional Laterality/physiology , Hand , Psychomotor Performance/physiology , Space Perception/physiology , Verbal Behavior/physiology , Adult , Female , Humans , Male , Neuropsychological Tests , Young Adult
9.
Brain Lang ; 114(3): 180-92, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20542548

ABSTRACT

"Highly iconic" structures in Sign Language enable a narrator to act, switch characters, describe objects, or report actions in four-dimensions. This group of linguistic structures has no real spoken-language equivalent. Topographical descriptions are also achieved in a sign-language specific manner via the use of signing-space and spatial-classifier signs. We used functional magnetic resonance imaging (fMRI) to compare the neural correlates of topographic discourse and highly iconic structures in French Sign Language (LSF) in six hearing native signers, children of deaf adults (CODAs), and six LSF-naïve monolinguals. LSF materials consisted of videos of a lecture excerpt signed without spatially organized discourse or highly iconic structures (Lect LSF), a tale signed using highly iconic structures (Tale LSF), and a topographical description using a diagrammatic format and spatial-classifier signs (Topo LSF). We also presented texts in spoken French (Lect French, Tale French, Topo French) to all participants. With both languages, the Topo texts activated several different regions that are involved in mental navigation and spatial working memory. No specific correlate of LSF spatial discourse was evidenced. The same regions were more activated during Tale LSF than Lect LSF in CODAs, but not in monolinguals, in line with the presence of signing-space structure in both conditions. Motion processing areas and parts of the fusiform gyrus and precuneus were more active during Tale LSF in CODAs; no such effect was observed with French or in LSF-naïve monolinguals. These effects may be associated with perspective-taking and acting during personal transfers.


Subject(s)
Brain Mapping , Brain/anatomy & histology , Brain/physiology , Comprehension/physiology , Language , Sign Language , Adult , Female , France , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Persons With Hearing Impairments
10.
Neuroimage ; 34(2): 784-800, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17110132

ABSTRACT

Reading and understanding speech are usually considered as different manifestations of a single cognitive ability, that of language. In this study, we were interested in characterizing the specific contributions of input modality and linguistic complexity on the neural networks involved when subjects understand language. We conducted an fMRI study during which 10 right-handed male subjects had to read and listen to words, sentences and texts in different runs. By comparing reading to listening tasks, we were able to show that the cerebral regions specifically recruited by a given modality were circumscribed to unimodal and associative unimodal cortices associated with the task, indicating that higher cognitive processes required by the task may be common to both modalities. Such cognitive processes involved a common phonological network as well as lexico-semantic activations as revealed by the conjunction between all reading and listening tasks. The restriction of modality-specific regions to their corresponding unimodal cortices was replicated when looking at brain areas showing a greater increase during the comprehension of more complex linguistic units than words (such as sentences and texts) for each modality. Finally, we discuss the possible roles of regions showing pure effect of linguistic complexity, such as the anterior part of the superior temporal gyrus and the ventro-posterior part of the middle temporal gyrus that were activated for sentences and texts but not for isolated words, as well as a text-specific region found in the left posterior STS.


Subject(s)
Brain Mapping , Brain/physiology , Pattern Recognition, Visual/physiology , Reading , Speech Perception/physiology , Speech/physiology , Adolescent , Adult , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male
11.
Neuroimage ; 27(3): 694-705, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15961322

ABSTRACT

The putative role of the so-called Visual Word Form Area (VWFA) during reading remains under debate. For some authors, this region is specifically involved in a pre-lexical processing of words and pseudowords, whereas such specificity is challenged by others given the VWFA involvement during both non-word reading and word listening. Here, we further investigated this issue, measuring BOLD variations and their lateralization with fMRI during word and non-word reading, in order to evaluate the lexicality effect, and during reading and listening of words, in order to evaluate the impact of stimulus delivery modality on word processing networks. Region of interest (ROI) analysis was first performed in three target areas: 1-VWFA as defined by a meta-analysis of the word reading literature, 2-a middle temporal area (T2) found co-activated by both word reading and listening, 3-an inferior occipital area (OI) belonging to the unimodal visual cortex of the inferior occipital gyrus. VWFA activity was found not different between word and non-word reading but was more leftward lateralized during word reading due to a reduction of activity in the VWFA right counterpart. A similar larger leftward lateralization during word reading was also uncovered in the T2 ROI but was related to a larger left side activity. Such a lexicality effect was not observed in the OI ROI. By contrast, BOLD increases during listening were restricted to the left VWFA and T2 ROIs. Voxel-based analysis (SPM99) showed that semantic areas were more active during word than non-word reading and co-activated by both reading and listening, exhibiting a left lateralized activity in all tasks. These results indicate that the left VWFA would be the place where visual and verbal representations bind under the control of left semantic areas.


Subject(s)
Reading , Visual Perception/physiology , Adolescent , Adult , Auditory Perception/physiology , Brain Mapping , Female , Fixation, Ocular , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net/physiology , Oxygen/blood , Speech
12.
Neuroimage ; 20(2): 693-712, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14568445

ABSTRACT

Numerous studies concerned with cerebral structures underlying word reading have been published during the last decade. A few controversies, however, together with methodological or theoretical discrepancies between laboratories, still contribute to blurring the overall view of advances effected in neuroimaging. Carried out within the dual route of reading framework, the aim of this metanalysis was to provide an objective picture of these advances. To achieve this, we used an automated analysis method based on the inventory of activation peaks issued from word or pseudoword reading contrasts of 35 published neuroimaging studies. A first result of this metanalysis was that no cluster of activations has been found more recruited by word than pseudoword reading, implying that the first steps of word access may be common to word and word-like stimuli and would take place within a left occipitotemporal region (previously referred to as the Visual Word Form Area-VWFA) situated in the ventral route, at the junction between inferior temporal and fusiform gyri. The results also indicated the existence of brain regions predominantly involved in one of the two routes to access word. The graphophonological conversion seems indeed to rely on left lateralized brain structures such as superior temporal areas, supramarginal gyrus, and the opercular part of the inferior frontal gyrus, these last two regions reflecting a greater load in working memory during such an access. The lexicosemantic route is thought to arise from the coactivation of the VWFA and semantic areas. These semantic areas would encompass a basal inferior temporal area, the posterior part of the middle temporal gyrus, and the triangular part of inferior frontal gyrus. These results confirm the suitability of the dual route framework to account for activations observed in nonpathological subjects while they read.


Subject(s)
Nervous System Physiological Phenomena , Nervous System/anatomy & histology , Reading , Clinical Trials as Topic , Cluster Analysis , Cognition/physiology , Functional Laterality/physiology , Humans , Magnetic Resonance Imaging , Nervous System/diagnostic imaging , Occipital Lobe/physiology , Stereotaxic Techniques , Temporal Lobe/physiology , Tomography, Emission-Computed , Visual Cortex/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...