Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 644: 1399-1408, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30743852

ABSTRACT

An improved understanding of the drivers controlling infiltration patterns in semiarid regions is of key importance, as they have important implications for ecosystem productivity, retention of resources and the restoration of degraded areas. The infiltration depth variability (ΔInf) in vegetation patches at the hillslope scale can be driven by different factors along the hillslope. Here we investigate the effects of vegetation and terrain attributes under hypothesis that these attributes exert a major control in ΔInf within the patches. We characterise the ΔInf within vegetation patches at a semiarid hillslope located at the Jornada Experimental Range at dry antecedent conditions preceding two winter frontal rainfall events. We measured these events that are typical during winter conditions, and are characterised by low intensity (0.67 and 4.48 mm h-1) and a total rainfall of 10.4 and 4.6 mm. High precision geo-referenced wetting front depth measurements were taken at various locations within the vegetation patches using differential GPS. Vegetation and terrain attributes were analysed to explain the ΔInf among the vegetation patches. The infiltration depths in the periphery of the patches were in general considerably deeper than those in the centre. The observations suggest that the upslope margin of the patches received additional water in the form of runon from upslope adjacent bare soil. Patch orientation with regard to the slope dictated the effect of the rest of the patch attributes and the distance to the hillslope crest on ΔInf. We found that primarily patch orientation, followed by shape and size modulate lateral surface water transport through their effects on overland flow paths and water retention; something that would be obscured under more simplistic characterisations based on bare versus uniform vegetated soil discrimination.

2.
Sci Total Environ ; 562: 47-60, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27096628

ABSTRACT

Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed.


Subject(s)
Ecosystem , Biomass , Carbon Sequestration , Climate Change , Ecology , Soil , Water
3.
Oecologia ; 171(4): 1003-12, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23015213

ABSTRACT

Disturbances in semiarid environments have revealed a strong connection between water, salt and vegetation dynamics highlighting how the alteration of water fluxes can drive salt redistribution process and long-term environmental degradation. Here, we explore to what extent the reciprocal effect, that of salt redistribution on water fluxes, may play a role in dictating environmental changes following disturbance in dry woodlands. We assessed salt and water dynamics comparing soil-solution electrical conductivity, chloride concentration, soil water content (SWC) and soil matric and osmotic water potential (Ψm, Ψos) between disturbed and undisturbed areas. A large pool of salts and chlorides present in undisturbed areas was absent in disturbed plots, suggesting deep leaching. Unexpectedly, this was associated with slight but consistently lower SWC in disturbed versus undisturbed situations during two growing seasons. The apparent paradox of increased leaching but diminishing SWC after disturbance can be explained by the effect of native salt lowering Ψos enough to prevent full soil drying. Under disturbed conditions, the onset of deep drainage and salt leaching would raise Ψos allowing a decline of Ψm and SWC. Soil water storage seems to be modulated by the presence (under natural conditions) and partial leaching (following selective shrub disturbance) of large salt pools. This counterintuitive effect of disturbances may be important in semiarid regions where deep soil salt accumulation is a common feature. Our results highlight the importance of water-salt-vegetation coupling for the understanding and management of these systems.


Subject(s)
Biota , Ecosystem , Salinity , Soil/analysis , Water Movements , Water/analysis , Analysis of Variance , Argentina , Chlorides/analysis , Electric Conductivity , Humidity , Models, Biological
4.
Ecol Appl ; 21(3): 678-94, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21639036

ABSTRACT

In arid regions throughout the world, shallow phreatic aquifers feed natural oases of much higher productivity than would be expected solely from local rainfall. In South America, the presence of well-developed Prosopis flexuosa woodlands in the Monte Desert region east of the Andes has puzzled scientists for decades. Today these woodlands provide crucial subsistence to local populations, including descendants of the indigenous Huarpes. We explore the vulnerability and importance of phreatic groundwater for the productivity of the region, comparing the contributions of local rainfall to that of remote mountain recharge that is increasingly being diverted for irrigated agriculture before it reaches the desert. We combined deep soil coring, plant measurements, direct water-table observations, and stable-isotopic analyses (2H and 18O) of meteoric, surface, and ground waters at three study sites across the region, comparing woodland stands, bare dunes, and surrounding shrublands. The isotopic composition of phreatic groundwaters (delta2H: -137 per thousand +/- 5 per thousand) closely matched the signature of water brought to the region by the Mendoza River (-137 per thousand +/- 6 per thousand), suggestin that mountain-river infiltration rather than in situ rainfall deep drainage (-39 per thousand +/- 19 per thousand) was the dominant mechanism of recharge. Similarly, chloride mass balances determined from deep soil profiles (> 6 m) suggested very low recharge rates. Vegetation in woodland ecosystems, where significant groundwater discharge losses, likely >100 mm/yr occurred, relied on regionally derived groundwater located from 6.5 to 9.5 m underground. At these locations, daily water-table fluctuations of 10 mm, and stable-isotopic measurements of plant water, indicated groundwater uptake rates of 200-300 mm/yr. Regional scaling suggests that groundwater evapotranspiration reaches 18-42 mm/yr across the landscape, accounting for 7 17% of the Mendoza River flow regionally. Our study highlights the reliance of ecosystem productivity in natural oases on Andean snowmelt, which is increasingly being diverted to one of the largest irrigated regions of the continent. Understanding the ecohydrological coupling of mountain and desert ecosystems here and elsewhere should help managers balance production agriculture and conservation of unique woodland ecosystems and the rural communities that rely on them.


Subject(s)
Desert Climate , Ecosystem , Water Movements , Water , Argentina , Environmental Monitoring , Geologic Sediments , Soil/chemistry , Time Factors
5.
Oecologia ; 141(4): 620-8, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15322902

ABSTRACT

Explanations for the occurrence of deep-rooted plants in arid and semi-arid ecosystems have traditionally emphasized the uptake of relatively deep soil water. However, recent hydrologic data from arid systems show that soil water potentials at depth fluctuate little over long time periods, suggesting this water may be rarely utilized or replenished. In this study, we examine the distributions of root biomass, soil moisture and nutrient contents to 10-m depths at five semi-arid and arid sites across southwestern USA. We couple these depth distributions with strontium (Sr) isotope data that show deep (>1 m) nutrient uptake is prevalent at four of the five sites. At all of the sites, the highest abundance of one or more of the measured nutrients occurred deep within the soil profile, particularly for P, Ca2+ and Mg2+. Phosphate contents were greater at depth than in the top meter of soil at three of five sites. At Jornada, for example, the 2-3 m depth increment had twice the extractable P as the top meter of soil, despite the highest concentrations of P occurring at the surface. The prevalence of such deep resource pools, and our evidence for cation uptake from them, suggest nutrient uptake as a complementary explanation for the occurrence of deep-rooted plants in arid and semi-arid systems. We propose that hydraulic redistribution of shallow surface water to deep soil layers by roots may be the mechanism through which deep soil nutrients are mobilized and taken up by plants.


Subject(s)
Ecosystem , Plant Physiological Phenomena , Plant Roots/growth & development , Soil/analysis , Biomass , Calcium/analysis , Calcium/pharmacokinetics , Fresh Water , Humidity , Magnesium/analysis , Magnesium/pharmacokinetics , Phosphorus/analysis , Phosphorus/pharmacokinetics , Plant Roots/metabolism , Southwestern United States , Strontium Isotopes
7.
Oecologia ; 108(3): 503-511, 1996 Nov.
Article in English | MEDLINE | ID: mdl-28307867

ABSTRACT

Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44-45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80-0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2-3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2-3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.

SELECTION OF CITATIONS
SEARCH DETAIL
...