Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 41(7): 1040-1049, 2022 02.
Article in English | MEDLINE | ID: mdl-34916592

ABSTRACT

Ectodysplasin A receptor (EDAR) is a death receptor in the Tumour Necrosis Factor Receptor (TNFR) superfamily with roles in the development of hair follicles, teeth and cutaneous glands. Here we report that human Oestrogen Receptor (ER) negative breast carcinomas which display squamous differentiation express EDAR strongly. Using a mouse model with a high Edar copy number, we show that elevated EDAR signalling results in a high incidence of mammary tumours in breeding female mice. These tumours resemble the EDAR-high human tumours in that they are characterised by a lack of oestrogen receptor expression, contain extensive squamous metaplasia, and display strong ß-catenin transcriptional activity. In the mouse model, all of the tumours carry somatic deletions of the third exon of the CTNNB1 gene that encodes ß-catenin. Deletion of this exon yields unconstrained ß-catenin signalling activity. We also demonstrate that ß-catenin activity is required for transformed cell growth, showing that increased EDAR signalling creates an environment in which ß-catenin activity can readily promote tumourigenesis. Together, this work identifies a novel death receptor oncogene in breast cancer, whose mechanism of transformation is based on the interaction between the WNT and Ectodysplasin A (EDA) pathways.


Subject(s)
Receptors, Ectodysplasin
2.
PLoS One ; 4(10): e7591, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19855838

ABSTRACT

The skin carries a number of appendages, including hair follicles and a range of glands, which develop under the influence of EDAR signalling. A gain of function allele of EDAR is found at high frequency in human populations of East Asia, with genetic evidence suggesting recent positive selection at this locus. The derived EDAR allele, estimated to have reached fixation more than 10,000 years ago, causes thickening of hair fibres, but the full spectrum of phenotypic changes induced by this allele is unknown. We have examined the changes in glandular structure caused by elevation of Edar signalling in a transgenic mouse model. We find that sebaceous and Meibomian glands are enlarged and that salivary and mammary glands are more elaborately branched with increased Edar activity, while the morphology of eccrine sweat and tracheal submucosal glands appears to be unaffected. Similar changes to gland sizes and structures may occur in human populations carrying the derived East Asian EDAR allele. As this allele attained high frequency in an environment that was notably cold and dry, increased glandular secretions could represent a trait that was positively selected to achieve increased lubrication and reduced evaporation from exposed facial structures and upper airways.


Subject(s)
Edar Receptor/metabolism , Skin/metabolism , Animals , Female , Hair/physiology , Heterozygote , Male , Mammary Glands, Animal/metabolism , Mice , Mice, Transgenic , Models, Biological , Phenotype , Salivary Glands/metabolism , Sebaceous Glands/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...