Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(16): 8822-8832, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37057992

ABSTRACT

Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our ∼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.


Subject(s)
Polyketide Synthases , Polyketides , Polyketide Synthases/metabolism , Acyltransferases/chemistry , Catalytic Domain , Polyketides/metabolism , Substrate Specificity
2.
Nat Commun ; 9(1): 4569, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385744

ABSTRACT

Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.


Subject(s)
Ketones/metabolism , Polyketide Synthases/genetics , Streptomyces/genetics , Synthetic Biology
3.
ACS Chem Biol ; 12(11): 2725-2729, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29028314

ABSTRACT

Streptomyces genomes have a high G + C content and typically use an ATG or GTG codon to initiate protein synthesis. Although gene-finding tools perform well in low GC genomes, it is known that the accuracy in predicting a translational start site (TSS) is much less for high GC genomes. LipPks1 is a Streptomyces-derived, well-characterized modular polyketide synthase (PKS). Using this enzyme as a model, we experimentally investigated the effects of alternative TSSs using a heterologous host, Streptomyces venezuelae. One of the TSSs employed boosted the protein level by 59-fold and the product yield by 23-fold compared to the originally annotated start codon. Interestingly, a structural model of the PKS indicated the presence of a structural motif in the N-terminus, which may explain the observed different protein levels together with a proline and arginine-rich sequence that may inhibit translational initiation. This structure was also found in six other modular PKSs that utilize noncarboxylated starter substrates, which may guide the selection of optimal TSSs in conjunction with start-codon prediction software.


Subject(s)
Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Streptomyces/enzymology , Streptomyces/genetics , Amino Acid Sequence , Gene Expression , Genes, Bacterial , Genetic Engineering , Models, Molecular , Polyketide Synthases/metabolism , Protein Biosynthesis , Protein Conformation , Streptomyces/chemistry , Streptomyces/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...