Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(13): e33808, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040342

ABSTRACT

Curcumin is classified as a chemotherapeutic medication because of its potential against numerous cancer cell lines and ability to inhibit cancer cell proliferation. Despite these findings, curcumin has yet to be commercialized as a drug due to its low water solubility, low absorption, and restricted bioavailability. As a result, there is a demand for water-soluble curcumin with improved solubility, bioavailability, and thus bioactivity. In this study we report the synthesis and the anticancer activities of water-soluble curcumins derivatives with alkyl sulfonate moiety. The target water-soluble curcumin with alkyl sulfonate moieties was created utilizing a straightforward technique that involved reacting curcumin with various sultones. The cytotoxic (24 h) and cytostatic (72 h) anticancer effect on breast carcinoma (MCF-7), liver carcinoma (HepG2), skin melanoma (B16-F110), colon human cancer and HeLa cervical carcinoma cell lines viability % via MTT assay were determined for the prepared derivatives. Results showed that curcumin-derived compounds have a pronounced cytostatic anticancer effect rather than cytotoxic one in relation to the compound type, cancer cell line type, and examined concentration compared to curcumin. The curcumin sulfonates outperformed curcumin activity against the tested cancer cells and showed to be powerful anticancer candidate drugs as supported by the theoretical calculations. This is evident by their high capacity to form H-bonding during docking with the amino acid side chains and the Vina docking score.

2.
Sci Rep ; 14(1): 13646, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871758

ABSTRACT

A novel nano bio-fertilizer encapsulation method was developed to crosslink chitosan and alginate with humic acid. These nanocapsules, referred to as (Ch./Alg.HA.NPK) or (Ch./Alg.HA.NPK.PGPRs), were loaded with nanoscale essential agro-nutrients (NPK) and beneficial microorganisms Pseudomonas Fluorescence abbreviated as (P.Fluorescence). Structural and morphological analyses were conducted using FourierTransform Infrared, Thermogravimetric Analysis, Scanning Electron Microscopy, Malvern Zeta NanoSizer, and Zeta potential. Encapsulation efficiency and water retention were also determined compared to control non-crosslinked nanocapsules. The sustained cumulative release of NPK over 30 days was also investigated to 33.2%, 47.8%, and 68.3%, alternatively. The release mechanism, also assessed through the kinetic module of the Korsemeyer- Peppas Mathematical model, demonstrated superior performance compared to non-crosslinked nanocapsules (chitosan/alginate). These results show the potential of the synthesized nanocapsules for environmentally conscious controlled release of NPK and PGPRs, thereby mitigating environmental impact, enhancing plant growth, and reducing reliance on conventional agrochemical fertilizers.


Subject(s)
Agriculture , Alginates , Chitosan , Fertilizers , Chitosan/chemistry , Agriculture/methods , Alginates/chemistry , Nanocapsules/chemistry , Humic Substances/analysis , Pseudomonas/metabolism , Pseudomonas/growth & development
3.
BMC Chem ; 18(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172974

ABSTRACT

The development of biobased polymeric materials for wastewater purification has become a demand due to the growing need for water free of hazardous metal ions for safe purposes. The organic components of the OLLW including carbohydrates, phenolics, aromatic acids and others are cost-effective and sustainable choices for this application. This work focuses on a method for turning the organic components of liquid waste from the olive industry (OILW) into a foam-based value-added polymer that has several metal ion binding sites. The process of making the target polymers involved reacting the components of the OILW with hexamethylene diisocyante and 1,4-phnyelene diisocynate to create the polymeric materials LHMIDIC and LPDIC that are in foam forms with urethane linkages, respectively. The adsorption competence of the polymeric foams toward Pb(II) was evaluated as a function of various parameters including adsorbent dose, pH, temperature, initial ion concentration and time. The optimum parameters values that led to a quantitative removal of Pb(II) were identified. The obtained thermodynamic parameters showed that the adsorption by the two foams was spontaneous at room temperature. The isothermal and kinetic values showed that the adsorption by synthesized foams follows a second order kinetic and obeys the Langmuir isothermal model. The foams showed a high tendency for removing multi metal ions present in a real sample of wastewater. The original nature of the starting material used in making the foam, cost and the obtained results showed the potential of using the foam in a large-scale plants of wastewater purification.

4.
Article in English | MEDLINE | ID: mdl-37174133

ABSTRACT

Volatile organic compounds (VOCs) are considered a major public health concern in industrial location areas. The presence of exposure to (VOCs) has raised concern regarding the health effects caused by chronic human exposure as this will increase cancer diseases in the village. An analytical method has been developed and modified to help us detect 38 VOCs in the blood of 38 volunteers who are related to a carpentry shop at the parts-per-trillion level. To measure and evaluate the potential risk, several devices, such as portable passive monitors and air-collected samples, in addition to blood concentration, were used to study three different occupational groups. Ten of the volunteers are employees at the shop, 10 volunteers live very close to the shop, and 10 of them are students in an elementary school very close to the shop. In this study, we developed an automated analytical method using headspace (HS) together with solid-phase microextraction (SPME) connected to capillary gas chromatography (GC) equipped with quadrupole mass spectrometry (MS). The detection limits for the method used were measured in the range from 0.001 to 0.15 ng/L, using linear calibration curves that have three orders of magnitude. The detected concentrations ranged from 3 ng L-1 for trichloroethene to 91 ng L-1 for toluene and 270 ng L-1 for 2,4-diisocyanate, which was derived from the paint solvents used for the wood in the carpentry shop and the paints on the walls. More than half of all assessed species (80%) had mean concentration values less than 50 ng L-1, which is the maximum allowed for most VOCs. The major chemical types among the compounds quantified will be those we found in our previous study in the surrounding air of a carpentry workshop in Deir Ballout in Palestine, which were toluene diisocyanate and butyl cyanate. Some were found to be highly present air. Most of the measurements were below the guidelines of the World Health Organization (WHO). Despite the fact that this study only involved a small number of smokers, smoking was found to be connected with several blood and breath components. This group includes unsaturated hydrocarbons (1,3-butadiene, 1,3-pentadiene, 2-butene), furans (2,5-dimethylfuran), and acetonitrile. The proposed classification of measured species into systemic (blood-borne) and exogenous volatiles is strictly hypothetical, as some species may have several origins.


Subject(s)
Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Arabs , Hydrocarbons/analysis , Solvents
5.
Polymers (Basel) ; 15(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36850079

ABSTRACT

In this work, we present a process for converting olive industry solid waste (OISW) into a value-added material with ionic receptors for use in the removal of toxic metal ions from wastewater. This 3D polymer is a promising adsorbent for large-scale application, since it is a low-cost material made from agricultural waste and showed exceptional performance. The synthesis of the network polymer involved the carboxymethylation of OISW and curing of the carboxymethylated OISW at an elevated temperature to promote the formation of ester linkages between OISW's components. FT-IR, atomic force microscopy, and thermal analysis were performed on the crosslinked product. The adsorption efficiency of the crosslinked carboxymethylated OISW toward Pb(II), Cu(II), and other toxic metal ions present in sewage was evaluated as a function of adsorbent dose, temperature, pH, time, and initial metal ion. The percentage removal of about 20 metal ions present in a sewage sample collected from a sewer plant located in the Palestinian Territories was determined. The adsorption efficiency did not drop even after six cycles of use. The kinetic study showed that the adsorption process follows the Langmuir isotherm model and the second-order adsorption rate. The experimental Qe values of 13.91 and 13.71 mg/g were obtained for Pb(II) and Cu(II) removal, respectively. The thermodynamic results confirm the spontaneous metal bonding to the receptor sites of the crosslinked carboxymethylated OISW.

6.
Plants (Basel) ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202397

ABSTRACT

Rosmarinus officinalis L. compounds, especially its main polyphenolic compounds, carnosic acid (CA) and rosmarinic acid (RA), influence various facets of cancer biology, making them valuable assets in the ongoing fight against cancer. These two secondary metabolites exhibit formidable antioxidant properties that are a pivotal contributor against the development of cancer. Their antitumor effect has been related to diverse mechanisms. In the case of CA, it has the capacity to induce cell death of cancer cells through the rise in ROS levels within the cells, the inhibition of protein kinase AKT, the activation of autophagy-related genes (ATG) and the disrupt mitochondrial membrane potential. Regarding RA, its antitumor actions encompass apoptosis induction through caspase activation, the inhibition of cell proliferation by interrupting cell cycle progression and epigenetic regulation, antioxidative stress-induced DNA damage, and interference with angiogenesis to curtail tumor growth. To understand the molecular interaction between rosemary compounds (CA and RA) and a protein that is involved in cancer and inflammation, S100A8, we have performed a series of molecular docking analyses using the available three-dimensional structures (PDBID: 1IRJ, 1MR8, and 4GGF). The ligands showed different binding intensities in the active sites with the protein target molecules, except for CA with the 1MR8 protein.

7.
Polymers (Basel) ; 14(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297842

ABSTRACT

Water purification from toxic metals was the main objective of this work. A composite in film form was prepared from the biomaterials hydroxyapatite, chitosan and glycerol using the dissolution/recrystallization method. A nanoparticle-based film with a homogenous and smooth surface was produced. The results of total reflectance infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA/DTA) demonstrated the presence of a substantial physical force between composite components. The composite was tested for its ability to absorb Cd2+ and Zn2+ ions from aqueous solutions. Cd2+ and Zn2+ adsorption mechanisms are fit using the Langmuir model and the pseudo-second-order model. Thermodynamic parameters indicated that Cd2+ and Zn2+ ion adsorption onto the composite surface is spontaneous and preferred at neutral pH and temperatures somewhat higher than room temperature. The adsorption studies showed that the maximum adsorption capacity of the HAp/CTs bio-composite membrane for Cd2+ and Zn2+ ions was in the order of cadmium (120 mg/g) > Zinc (90 mg/g) at an equilibrium time of 20 min and a temperature of 25 °C. The results obtained on the physico-chemical properties of nanocomposite membranes and their sorption capacities offer promising potential for industrial and biological activities.

8.
BMC Chem ; 16(1): 43, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35689266

ABSTRACT

BACKGROUND: Cellulose polymers with multidentate chelating functionalities that have high efficiency for toxic metal ions present in water were designed, synthesized, and analyzed. The synthesis was carried out by reacting microcrystalline cellulose extracted from the solid waste of the olive industry with tert-Butyl acetoacetate (Cell-AA), produced cellulose with ß-ketoester functionality was then reacted with aniline and the amino acid glycine to produce Cell-ß-AN and Cell-ß-GL, respectively. RESULTS: The adsorption efficiency of the three polymers toward Pb(II) and various toxic metal ions present in sewage was evaluated as a function of adsorbent dose, time, temperature, pH value, and initial ion concentration to determine optimum adsorption conditions. The three polymers showed excellent efficiency toward about 20 metal ions present in a sewage sample collected from the sewer. The adsorption process follows the Langmuir adsorption isotherm model with a second-order of adsorption rate, the calculated qe values (2.675, 15.252, 20.856 mg/g) were close to the experimental qe values (2.133, 13.91, 18.786 mg/g) for the three polymers Cell-AA, Cell-ß-AG and Cell-ß-AN, respectively. Molecular Dynamic (MD) and Monte Carlo (MC) simulations were performed on the three polymers complexed with Pb(II). CONCLUSION: The waste material of the olive industry was used as a precursor for making the target cellulose polymers with ß-Amino Ester Pendant Group. The polymer was characterized by SEM, proton NMR, TGA, and FT-IR spectroscopy. The efficacy of adsorption was quantitative for metal ions present in a real sample of wastewater and the efficiency didn't drop even after 7 cycles of use. The results indicate the existence of strong complexation. The thermodynamic study results showed a spontaneous bonding between of Pb(II) and the polymers pendant groups expressed by the negative value of the Gibbs free energy.

9.
BMC Chem ; 16(1): 17, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35313931

ABSTRACT

BACKGROUND: Human and veterinary antibiotics are typically discharged as parent chemicals in urine or feces and are known to be released into the environment via wastewater treatment plants (WWTPs). Several research investigations have recently been conducted on the removal and bioremediation of pharmaceutical and personal care products (PPCPs) disposed of in wastewater. RESULTS: SiNP-Cu, a chelating matrix, was produced by delaying and slowing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel from functionalized with 3-aminopropyltrimethoxysilane. The prepared sorbent material was characterized using several techniques including BET surface area, FT-IR spectroscopy, Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen adsorption-desorption isotherm. The pseudo-second-order model provided the best correlation due to the big match between the experimental and theoretical of different adsorption coefficients. The Langmuir and Freundlich adsorption models were used and the study showed a better match with the Freundlich model with a capacity of removal reached up to 420 mg g-1. The removal capacity was dependent on pH and increased by increasing pH. The removal percentage reached 91;5% at pH = 8. The adsorbent demonstrated a high percentage removal of TMP, reaching more than 94% when increased pH. The sample was simply regenerated by soaking it for a few minutes in 1 N HCl and drying it. The sorbent was repeated five times with no discernible decrease in removal capacity. The thermodynamic study also showed endothermic, increasing randomness and not spontaneous. The free energy was 2.71 kJ/mol at 320 K. The findings of the DFT B3LYP/6-31 + g (d, p) local reactivity descriptors revealed that nitrogen atoms and π-electrons of the benzene and pyrimidine rings in the TMP are responsible for the adsorption process with the SiNP surface. The negative values of the adsorption energies obtained by molecular dynamic simulation indicated the spontaneity of the adsorption process. CONCLUSION: The global reactivity indices prove that TMP is stable and it can be removed from wastewater using SiNP surface. The results of the local reactivity indices concluded that the active centers for the adsorption process are the nitrogen atoms and the π-electrons of the pyrimidine and benzene rings. Furthermore, the positive value of the maximum charge transfer number (ΔN) proves that TMP has a great tendency to donate electrons to SiNP surface during the process of adsorption.

10.
Front Chem ; 9: 709600, 2021.
Article in English | MEDLINE | ID: mdl-34336793

ABSTRACT

The expanding amount of remaining drug substances in wastewater adversely affects both the climate and human well-being. In the current investigation, we developed new cellulose acetic acid derivation/zeolite fiber as an effective technique to eliminate erythromycin (ERY) from wastewater. The number of interchangeable sites in the adsorbent structures and the ratio of ERY to the three adsorbents were identified as the main reasons for the reduction in adsorption as the initial ERY concentrations increased. Additionally, for all adsorbents, the pseudo-second-order modeling showed better fitting for the adsorption than the pseudo-first-order modeling. However, the findings obtained in the pseudo-first-order model were still enough for explaining the sorption kinetics of ERY, showing that the surface displayed all chemisorption and physi-sorption adsorption processes by both adsorbents. The R 2 for the second order was very close to 1 for the three adsorbents in the case of pseudo-second-order. The adsorption capacity reached 17.76 mg/g. The three adsorbents showed negative values of ΔH, and these values were -6,200, -8,500, and -9600 kJ/mol for zeolite, CA, and ZCA, respectively, and this shows that the adsorption is exothermic. The desorption analysis shows no substantial loss of adsorption site after three trials, indicating higher stability and resilience of the three adsorbents, indicating a strong repeatability of their possible use in adsorption without contaminating the environment. In addition, the chemical attitude and possible donor-acceptor interactions of ERY were assessed by the quantum chemical parameters (QCPs) and NBO analysis performed, at the HF/6-311G** calculations.

11.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200114

ABSTRACT

The goal of this work was to develop polymer-based heterocycle for water purification from toxic pesticides such as difenoconazole. The polymer chosen for this purpose was cellulose nanocrystalline (CNC); two cellulose based heterocycles were prepared by crosslinking with 2,6-pyridine dicarbonyl dichloride (Cell-X), and derivatizing with 2-furan carbonyl chloride (Cell-D). The synthesized cellulose-based heterocycles were characterized by SEM, proton NMR, TGA and FT-IR spectroscopy. To optimize adsorption conditions, the effect of various variable such as time, adsorbent dose, pH, temperature, and difenoconazole initial concentration were evaluated. Results showed that, the maximum difenoconazole removal percentage was about 94.7%, and 96.6% for Cell-X and Cell-D, respectively. Kinetic and thermodynamic studies on the adsorption process showed that the adsorption of difenoconazole by the two polymers is a pseudo-second order and follows the Langmuir isotherm model. The obtained values of ∆G ° and ∆H suggest that the adsorption process is spontaneous at room temperature. The results showed that Cell-X could be a promising adsorbent on a commercial scale for difenoconazole. The several adsorption sites present in Cell-X in addition to the semi crown ether structure explains the high efficiency it has for difenoconazole, and could be used for other toxic pesticides. Monte Carlo (MC) and Molecular Dynamic (MD) simulation were performed on a model of Cell-X and difenoconazole, and the results showed strong interaction.


Subject(s)
Cellulose/chemistry , Dioxolanes/isolation & purification , Nanoparticles/chemistry , Polymers/chemistry , Polymers/metabolism , Triazoles/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Dioxolanes/metabolism , Hydrogen-Ion Concentration , Molecular Docking Simulation , Thermodynamics , Triazoles/metabolism , Water Pollutants, Chemical/metabolism
12.
Polymers (Basel) ; 13(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573294

ABSTRACT

In this study, cellulose-based derivatives with heterocyclic moieties were synthesized by reacting cellulose with furan-2-carbonyl chloride (Cell-F) and pyridine-2,6-dicarbonyl dichloride (Cell-P). The derivatives were evaluated as adsorbents for the pesticide tetraconazole from aqueous solution. The prepared adsorbents were characterized by SEM, TGA, IR, and H1 NMR instruments. To maximize the adsorption efficiency of tetraconazole, the optimum conditions of contact time, pH, temperature, adsorbent dose, and initial concentration of adsorbate were determined. The highest removal percentage of tetraconazole from water was 98.51% and 95% using Cell-F and Cell-P, respectively. Underivatized nanocellulose was also evaluated as an adsorbent for tetraconazole for comparison purpose, and it showed a removal efficiency of about 91.73%. The best equilibrium adsorption isotherm model of each process was investigated based on the experimental and calculated R2 values of Freundlich and Langmuir models. The adsorption kinetics were also investigated using pseudo-first-order, pseudo-second-order, and intra-particle-diffusion adsorption kinetic models. The Van't Hoff plot was also studied for each adsorption to determine the changes in adsorption enthalpy (∆H), Gibbs free energy (∆G), and entropy (∆S). The obtained results showed that adsorption by Cell-F and Cell-P follow the Langmuir adsorption isotherm and the mechanism follows the pseudo-second-order kinetic adsorption model. The obtained negative values of the thermodynamic parameter ∆G (-4.693, -4.792, -5.549 kJ) for nanocellulose, Cell-F, and Cell-P, respectively, indicate a spontaneous adsorption process. Cell-F and Cell-P could be promising absorbents on a commercial scale for tetraconazole and other pesticides.

13.
Environ Technol ; 42(7): 1119-1131, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31423913

ABSTRACT

In this study, we used a synthesized cross-linked magnetic chitosan with graphene oxide beads to study the removal of perchlorate from wastewater. The prepared complex was characterized using transmission electron microscopy (TEM), Fourier Transformation Infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM) and Thermal gravimetric analysis (TGA). Several parameters were studied including the effect of pH, contact time and the co-existing anions. The study showed that the adsorption could be studied in a wide range of pH. The study showed that the adsorption follows a pseudo-second-order model and Langmuir adsorption isotherm. The enthalpy and negative Gibbs standard free energy showed that the adsorption process was exothermic and spontaneous. The perchlorate adsorbent can be regenerated well by 0.1% NaCl solution.


Subject(s)
Chitosan , Graphite , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Magnetic Phenomena , Perchlorates , Spectroscopy, Fourier Transform Infrared , Wastewater
14.
Materials (Basel) ; 13(15)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32726973

ABSTRACT

In recent years, concerns have been raised about the occurrence of active raw materials and pharmaceutical ingredients that may be present in water, including wastewater, in the pharmaceutical industry. Wastewater treatment methods are not enough to completely remove active pharmaceuticals and other waste; thus, this study aims to assess the use of a multiwall carbon nanotube after derivatization and magnetization as a new and renewable absorbent for removing ibuprofen from an aqueous medium. The adsorbents were prepared by first oxidizing a multiwall carbon nanotube and then deriving the oxidized product with hydroxyl amine (m-MWCNT-HA), hydrazine (m-MWCNT-HYD), and amino acid (m-MWCNT-CYS). Adsorbents were characterized by Raman spectroscopy, Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and TEM), Brunauer-Emmett-Teller surface area analysis (BET), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Batch adsorption studies were conducted to study the effects of pH, temperature, time, and initial concentration of the adsorbate. Adsorption isotherm, kinetics, and thermodynamics studies were also conducted. The results show that the optimal pH for nearly complete removal of Ibu in a short time at room temperature was 4 for three adsorbents. The adsorption followed the Langmuir isotherm model with pseudo-second-order kinetics. The percentage of removal of ibuprofen reached up to 98.4%, 93%, and 61.5% for m-MWCNT-CYS, m-MWCNT-HYD, and m-MWCNT-HA respectively. To the best of our knowledge, the grafted MWCNTs presented in this work comprise the first example in the literature of oxidized MWCNT modified with such functionalities and applied for ibuprofen removal.

15.
Med Chem ; 16(8): 1112-1123, 2020.
Article in English | MEDLINE | ID: mdl-31448712

ABSTRACT

BACKGROUND: Curcumin is a safe, versatile natural product with unlimited number of biological activities and a precursor for various heterocyclic compounds. OBJECTIVE: The present study was aimed to the development of a curcumin based antimicrobial reagent with high potency against gram-positive and gram-negative bacteria. METHODS: Herein we report a simple and convenient one step method for synthesizing a series of 1,4-benzodiazepines via condensation cyclization reaction between curcumin and various 1,2- phenylenediamine in refluxed ethanol. RESULTS: A series of new 1,4-benzodiazepins were synthesized and their structures were supported by FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. Synthesized 1,4-benzodiazepins were evaluated for their in vitro antimicrobial activity against gram positive (S. aureus and S. epidermidis) and gram negative (E. coli and P. aeruginosa) bacteria. They exhibited low to high potency against the tested organisms. In particular, dichlorinated 1,4-benzodiazepine 9 exhibited a remarkable potency against the gram-positive bacteria S. aureus (MIC: 3.125 µg mL-1, MBC: 12 µg mL-1). It showed a higher potency than most of the tested reference drugs. Compound 9 showed the medium activity against E. coli. Genotoxic study revealed that, benzodiazepines 9 attacked the DNA of E. coli strains and damaged it. The potency of compound 9, could be attributed to the multiple chlorine atoms present on the aromatic ring. CONCLUSION: Some of the synthesized curcumin based benzodiazepines showed excellent potency against gram positive bacteria. These benzodiazepines could be a great candidate as a future antimicrobial agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzodiazepines/pharmacology , Curcumin/chemistry , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Microbial Sensitivity Tests , Molecular Structure
16.
Environ Sci Pollut Res Int ; 26(27): 28080-28091, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31363973

ABSTRACT

A cross-linked cellulose-amine polymer composed of nanocrystalline cellulose and 1,4-pheneylnediamine was synthesized, and its application as an adsorbent of metal ions from wastewater was dementated. The nanocrystalline cellulose was generated from an olive industry solid waste. The cross-linked polymer analysis results of FTIR, NMR, TEM, SEM, and XRD were generated. The adsorption efficiency of the cellulose-amine polymer toward Cu(II) and Pb(II) was investigated as a function of adsorbent dose, temperature, pH, and time. The adsorption parameters that lead to an excellent adsorption efficiency were determined. The polymer also showed an excellent extraction efficiency toward 20 metal ions present in a sewage sample. The various functional groups present on polymer surface such as amino, hydroxyl, and aryl played a crucial role on metal adsorption. Thermodynamic analysis results support the high efficiency of the polymer toward the metal ions. Kinetic study results reveal that the adsorption process fits well with the pseudo-second-order model and the adsorption isotherm follows a Langmuir isotherm model.


Subject(s)
Waste Disposal, Fluid/methods , Adsorption , Amines , Cellulose/chemistry , Ions/analysis , Kinetics , Metals, Heavy/analysis , Polymers , Temperature , Thermodynamics , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
17.
BMC Chem ; 13(1): 86, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31384833

ABSTRACT

Pesticides and herbicides have been used extensively in agricultural practices to control pests and increase crop yields. Paraquat (PQT2+, 1,1-dimethyl-4,4-dipyridinium chloride) is one of the herbicide that belois classified as bipyridines and is used over the world. The objective of this study is to use ketoenol-pyrazole receptor functionalized silica hybrid as adsorbent for removal PQT2+ from aqueous solution. The adsorbent was synthesized, and characterized using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), Thermal analysis and other techniques. Different experimental parameters such as the effect of the amount of adsorbent, solution pH and temperatures and contact times were studied. Pseudo-order kinetics models were studied, and our data followed a pseudo second order. Experimental data were analyzed for both Langmuir and Freundlich models and the data fitted well with the Langmuir isotherm model. To understand the mechanism of adsorption, thermodynamic parameters like standard enthalpy, standard Gibbs free energy, and standard entropy were studied. The study indicated that the process is spontaneous, exothermic in nature and follow physisorption mechanisms. The novelty of this study showed surface of pyrazol-enol-imine-substituted silica (SiNPz) has the ability to highlight the surface designed for efficient removal of PQT2+, from aqueous solutions more than other studies. The study also showed that ketoenol-pyrazole receptor can be regenerated in five cycles using HNO3 without affecting its adsorption capacity.

18.
Bull Environ Contam Toxicol ; 103(2): 348-353, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31069403

ABSTRACT

The residual activity of herbicides may be detrimental to the environment, requiring analysis of the persistent residues in the soil and water. A field study was conducted to measure the residues of Imidazolinone (IMI) in three Clearfield® rice field soils at three different locations in Malaysia. The analyses of IMI in the soil samples were carried out using a high-performance liquid chromatography (HPLC). These herbicides are widely used; however, few studies have been conducted on both residues, especially in the context of Malaysian soil. Residues of imazapic and imazapyr were found to fall within 0.03-0.58 µg/mL and 0.03-1.96 µg/mL, respectively, in three locations. IMI herbicides are persistent in the soil, and their residues remain for up to 85 days after application. A pre-harvest study was suggested for these herbicides on water, which will provide a clearer indicator on the use of IMI in Clearfield® rice fields.


Subject(s)
Herbicides/analysis , Imidazoles/analysis , Oryza/growth & development , Pesticide Residues/analysis , Soil Pollutants/analysis , Soil/chemistry , Chromatography, High Pressure Liquid/methods , Environmental Monitoring/methods , Malaysia
19.
Environ Monit Assess ; 191(6): 405, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31144085

ABSTRACT

The objective of this study is the determination of the chemical structure of nine phenolic molecules responsible for the phytotoxic action on the germination of the plant species "Trigonella foenum-graecum". The phytotoxic action was evaluated by calculating the germination index of the plant species for a period of 5 days of incubation. The analysis of the physicochemical properties of phenolic molecules shows that hydrophobicity is a key factor in phytotoxicity. The sublethal concentration varies as follows: hydroquinone (0.91 mM), 4-aminophenol (0.85 mM), phenol (0.75 mM), gallic acid (0.59 mM), caffeic acid (0.56 mM), 3,5-di-tert-butylcatechol (0,45 mM), quercetin (0.33 mM), oleuropein (0.3 mM), and catechol (0.13 mM). Phytotoxicity varies depending on the nature and position of the substituents on the aromatic ring. The reactivity of this type of molecule is partly linked to the presence of catechol function that can play the main role in phytotoxicity of the Fenugreek.


Subject(s)
Environmental Pollutants/toxicity , Germination/drug effects , Olive Oil , Phenols/toxicity , Trigonella/drug effects , Wastewater/chemistry , Environmental Monitoring , Environmental Pollutants/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Phenols/chemistry , Seeds/drug effects , Seeds/growth & development , Structure-Activity Relationship , Trigonella/growth & development
20.
Int J Phytoremediation ; 21(10): 944-952, 2019.
Article in English | MEDLINE | ID: mdl-31025574

ABSTRACT

This research was aimed to assess the photosynthetic activities of barley (Hordeum valgare L.), clover (Trifolium repens L.), and pearl millet (Pennisetum glaucum (L.) R. Br.) under different saline conditions with two strains of Pseudomonas putida (UW3 and UW4) treatments. An exceptional observation was revealed on barley biomass ratio (288.8%) that irrigated with brackish saline water (10,000 mg/L) with the presence of P. putida UW4 strain. In general, P. putida UW3 strain was significantly increased crops biomass ratio (249.4%, 202.1%, and 212.5%) for barley, pearl millet, and clover, respectively, which were irrigated with 10,000 mg/L brackish saline water. Plant root and shoot systems were significantly increased in their length and weight reflecting the improvement of plants' photosynthetic activities under salt stress conditions with the presence of P. putida strains. The results from pulse amplitude modulation fluorometry showed that the plants were recovered from the saline stress effect once P. putida strains were applied. The outcome of this research was highly recommended to apply P. putida strains (UW3 and UW4) with field crops for phytoremediation, in particular, where salinity (soil and/or brackish water) was environmentally challenging.


Subject(s)
Pseudomonas putida , Biodegradation, Environmental , Photosynthesis , Plant Roots , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...