Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioimpacts ; 14(3): 29913, 2024.
Article in English | MEDLINE | ID: mdl-38938754

ABSTRACT

Introduction: As the most common aggressive primary brain tumor, glioblastoma is inevitably a recurrent malignancy whose patients' prognosis is poor. miR-143 and miR-145, as tumor suppressor miRNAs, are downregulated through tumorigenesis of multiple human cancers, including glioblastoma. These two miRNAs regulate numerous cellular processes, such as proliferation and migration. This research was intended to explore the simultaneous replacement effect of miR-143, and miR-145 on in vitro tumorgenicity of U87 glioblastoma cells. Methods: U87 cells were cultured, and transfected with miR-143-5p and miR-145-5p. Afterward, the changes in cell viability, and apoptosis induction were determined by MTT assay and Annexin V/PI staining. The accumulation of cells at the cell cycle phases was assessed using the flow cytometry. Wound healing and colony formation assays were performed to study cell migration. qRT-PCR and western blot techniques were utilized to quantify gene expression levels. Results: Our results showed that miR-143-5p and 145-5p exogenous upregulation cooperatively diminished cell viability, and enhanced U-87 cell apoptosis by modulating Caspase-3/8/9, Bax, and Bcl-2 protein expression. The combination therapy increased accumulation of cells at the sub-G1 phase by modulating CDK1, Cyclin D1, and P53 protein expression. miR-143/145-5p significantly decreased cell migration, and reduced colony formation ability by the downregulation of c-Myc and CD44 gene expression. Furthermore, the results showed the combination therapy of these miRNAs could remarkably downregulate phosphorylated-AKT expression levels. Conclusion: In conclusion, miR-143 and miR-145 were indicated to show cooperative anti- cancer effects on glioblastoma cells via modulating AKT signaling as a new therapeutic approach.

2.
Adv Pharm Bull ; 14(1): 231-240, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585468

ABSTRACT

Purpose: MicroRNAs (miRNAs) are a group of small regulatory non-coding RNAs, which are dysregulated through tumor progression. let-7 and MIR-145 are both tumor suppressor microRNAs that are downregulated in a wide array of cancers including colorectal cancer (CRC). Methods: This study was aimed to investigate the effect of simultaneous replacement of these two tumor suppressor miRNAs on proliferation, apoptosis, and migration of CRC cells. HCT-116 with lower expression levels of hsa-let-7a-3p and MIR-145-5p was selected for functional investigations. The cells were cultured and transfected with hsa-let-7a and MIR-145, separately and in combination. Cell viability and apoptosis rates were assessed by MTT assay and flow cytometry, respectively. Cell cycle status was further evaluated using flow cytometry and qRT-PCR was employed to evaluate gene expression. Results: The obtained results showed that exogenous overexpression of MIR-145 and hsa-let-7a in HCT-116 cells could cooperatively decrease CRC cell proliferation and induce sub-G1 cell cycle arrest. Moreover, hsa-let-7a and MIR-145 co-transfection significantly increased apoptosis induction compared to separate transfected cells and control through modulating the expression levels of apoptosis-related genes including Bax, Bcl-2, P53, Caspase-3, Caspase-8, and Caspase-9. Furthermore, qRT-PCR results illustrated that hsa-let-7a and MIR-145 combination more effectively downregulated MMP-9 and MMP-2 expression, as the important modulators of metastasis, compared to the controls. Conclusion: Taken together, considering that exogenous overexpression of MIR-145 and hsa-let-7a showed cooperative anti-cancer effects on CRC cells, their combination may be considered as a novel therapeutic strategy for the treatment of CRC.

SELECTION OF CITATIONS
SEARCH DETAIL
...