Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119017, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33045481

ABSTRACT

The Z-scan and DFT techniques were explored to investigate the non-linear optical properties of anthraquinone fused imidazole-based D-π-A dyes. With the help of UV-visible spectral analysis, pH study, CV analysis, HOMO-LUMO interaction, MEP plots, and quinoidal character the influence of intramolecular charge transfer characteristics and H-bonding process on electronic and photophysical studies of anthraquinone derivatives were understood. The dyes 2-(4-(diethylamino)-2-hydroxyphenyl)-3H-anthra[1,2-d]imidazole-6,11-dione (AQ1) and 2-(2-hydroxynaphthalen-1-yl)-1H-anthra[1,2-d]imidazole-6,11-dione (AQ2) displayed a single emission with pronounced Stokes shift and thermal stability (upto 290 °C). The dye AQ1 exhibited strong charge transfer character which is explained by the ICT process leading to high nonlinear susceptibility χ(3) in AQ1 3.43 × 10-13 e.s.u relative to the dye AQ2 which has only ESIPT core. But, the dye AQ2 6.27 J cm-2 showed better optical limiting value. The NLO properties of AQ1 and AQ2 were computed by DFT functionals based on Hartree Fork (HF) percentage exchange. The dye AQ1 exhibits noticeable NLO properties. The global hybrid functionals with HF composition beyond 50% (BHHLYP, M06-HF) and the long rang corrected functionals (CAM-B3LYP, ωB97, and ωB97X) demonstrated comparable NLO properties relative to B3LYP and PBE0. It was observed that the combined effect of ICT and the H-bonding cores enhance the NLO properties. The experimental findings (Z-scan) were successfully correlated with theoretical (DFT) results.

2.
J Fluoresc ; 30(2): 335-346, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32026240

ABSTRACT

Herein, we report the hydroxybenzazole (HBX) containing azo dyes for "linear and non-linear optical" (NLO) applications. These bi-heterocyclic dyes have HBX scaffold (decorated with ESIPT core) and connected to another thiazole moietiy through azo bond. In DMF and DMSO, dyes are "emissive in yellow-red region" and "large Stokes shift" in the range of 62-121 nm were observed. "Nonlinear absorptive coefficient" (ß), "nonlinear refractive index" (ƞ2), "third order non-linear optical susceptibility" (χ3) in DMSO, ethanol and methanol were calculated using simple and effective "Z-scan technique" having "Nd: YAG laser" at 532 nm wavelength. 4.46 × 10-13 (e.s.u.) was the highest (χ3) was observed in DMSO among all the dyes. Optical Limiting (OL) values are in the range of 7.61-19.06 J cm-2 in solvents. Thermo Gravimetric Analysis (TGA) supports that, these compounds are useful for numerous high-temperature practices in the construction of electronic as well as optical devices. Band gap was calculated by CV as well as by DFT in acetonitrile. The same trend was observed when these HOMO-LUMO gaps were correlated in between CV and DFT. To gain more insights into structural parameters, molecular geometries were optimized at "B3LYP-6-311 + G (d,p)" level of theory. Further, "Molecular Electrostatic Potential" (MEP), "Frontier Molecular Orbitals" (FMO) were presented using "Density Functional Theory (DFT)". Global hybrid functional (B3LYP, BHandHLYP) and range separated hybrid functionals (RSH) i.e. CAM-B3LYP, ωB97, ωB97X, and ωB97XD were used to calculate linear and NLO properties. Graphical Abstract.

3.
Acta Crystallogr C ; 59(Pt 10): O553-5, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14532668

ABSTRACT

The structure of the title compound, 2C(4)H(9)N(2)O(3)(+).C(2)O(4)(2-), which has been determined by X-ray diffraction, contains discrete glycylglycine (HGly-Gly)(+) cations in general positions and oxalate anions which lie across centres of inversion. Although the geometry of the (HGly-Gly)(+) cation is not significantly different compared with other structures containing this residue, a few changes in conformation are observed which indicate the presence of molecular interactions. The molecular network in the crystal consists of one nearly linear O-H...O, five N-H...O and two weak C-H.O hydrogen bonds.


Subject(s)
Glycylglycine/chemistry , Oxalates/chemistry , Cations/chemistry , Cold Temperature , Crystallography, X-Ray , Hydrogen Bonding , Molecular Conformation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...