Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Eng Lett ; 14(5): 993-1009, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39220021

ABSTRACT

DNA data storage has emerged as a solution for storing massive volumes of data by utilizing nucleic acids as a digital information medium. DNA offers exceptionally high storage density, long durability, and low maintenance costs compared to conventional storage media such as flash memory and hard disk drives. DNA data storage consists of the following steps: encoding, DNA synthesis (i.e., writing), preservation, retrieval, DNA sequencing (i.e., reading), and decoding. Out of these steps, DNA synthesis presents a bottleneck due to imperfect coupling efficiency, low throughput, and excessive use of organic solvents. Overcoming these challenges is essential to establish DNA as a viable data storage medium. In this review, we provide the overall process of DNA data storage, presenting the recent progress of each step. Next, we examine a detailed overview of DNA synthesis methods with an emphasis on their limitations. Lastly, we discuss the efforts to overcome the constraints of each method and their prospects.

2.
Biomed Eng Lett ; 14(5): 1147-1152, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39220027

ABSTRACT

[This corrects the article DOI: 10.1007/s13534-024-00386-z.].

3.
BMC Med Genomics ; 16(1): 332, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114957

ABSTRACT

BACKGROUND: Several genome-wide association studies (GWAS) have been performed to identify variants related to chronic diseases. Somatic variants in cancer tissues are associated with cancer development and prognosis. Expression quantitative trait loci (eQTL) and methylation QTL (mQTL) analyses were performed on chronic disease-related variants in TCGA dataset. METHODS: MuTect2 calling variants for 33 cancers from TCGA and 296 GWAS variants provided by LocusZoom were used. At least one mutation was found in TCGA 22 cancers and LocusZoom 23 studies. Differentially expressed genes (DEGs) and differentially methylated regions (DMRs) from the three cancers (TCGA-COAD, TCGA-STAD, and TCGA-UCEC). Variants were mapped to the world map using population locations of the 1000 Genomes Project (1GP) populations. Decision tree analysis was performed on the discovered features and survival analysis was performed according to the cluster. RESULTS: Based on the DEGs and DMRs with clinical data, the decision tree model classified seven and three nodes in TCGA-COAD and TCGA-STAD, respectively. A total of 11 variants were commonly detected from TCGA and LocusZoom, and eight variants were selected from the 1GP variants, and the distribution patterns were visualized on the world map. CONCLUSIONS: Variants related to tumors and chronic diseases were selected, and their geological regional 1GP-based proportions are presented. The variant distribution patterns could provide clues for regional clinical trial designs and personalized medicine.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Neoplasms/genetics , Mutation , Quantitative Trait Loci , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL