Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 359
Filter
2.
Chest ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029785

ABSTRACT

BACKGROUND: Central airway obstruction (CAO), seen in a variety of malignant and non-malignant airway disorders, is associated with a poor prognosis. The management of CAO is dependent on provider training and local resources, which may make the clinical approach and outcomes highly variable. We reviewed the current literature and provided evidence-based recommendations for the management of CAO. METHODS: A multidisciplinary expert panel developed key questions using the PICO (Patient, Intervention, Comparator, and Outcomes) format and conducted a systematic literature search using MEDLINE (PubMed) and the Cochrane Library. The panel screened references for inclusion and used vetted evaluation tools to assess the quality of included studies and extract data, and graded the level of evidence supporting each recommendation. A modified Delphi technique was used to reach consensus on recommendations. RESULTS: Nine thousand, six hundred and eighty-eight abstracts were reviewed, 150 full-text articles were assessed, and 31 studies were included in the analysis. One good practice statement and ten graded recommendations were developed. The overall certainty of evidence was very low. CONCLUSIONS: Therapeutic bronchoscopy can improve the symptoms, quality of life, and survival of patients with malignant and non-malignant CAO. Multi-modality therapeutic options, including rigid bronchoscopy with general anesthesia, tumor/tissue debridement, ablation, dilation, and stent placement should be utilized when appropriate. Therapeutic options and outcomes are dependent on the underlying etiology of CAO. A multidisciplinary approach and shared decision-making with the patient are strongly encouraged.

3.
J Natl Compr Canc Netw ; 22(4): 249-274, 2024 05.
Article in English | MEDLINE | ID: mdl-38754467

ABSTRACT

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non-Small Cell Lung Cancer (NSCLC) provide recommendations for the treatment of patients with NSCLC, including diagnosis, primary disease management, surveillance for relapse, and subsequent treatment. The panel has updated the list of recommended targeted therapies based on recent FDA approvals and clinical data. This selection from the NCCN Guidelines for NSCLC focuses on treatment recommendations for advanced or metastatic NSCLC with actionable molecular biomarkers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Molecular Targeted Therapy/methods , Neoplasm Staging
4.
Nat Commun ; 15(1): 3152, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605064

ABSTRACT

While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Positron Emission Tomography Computed Tomography/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Positron-Emission Tomography , Tomography, X-Ray Computed , Retrospective Studies
5.
JAMA Oncol ; 10(6): 799-806, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38602670

ABSTRACT

Importance: The treatment of locally advanced non-small cell lung cancer (LA-NSCLC) has been informed by more than 5 decades of clinical trials and other relevant literature. However, controversies remain regarding the application of various radiation and systemic therapies in commonly encountered clinical scenarios. Objective: To develop case-referenced consensus and evidence-based guidelines to inform clinical practice in unresectable LA-NSCLC. Evidence Review: The American Radium Society (ARS) Appropriate Use Criteria (AUC) Thoracic Committee guideline is an evidence-based consensus document assessing various clinical scenarios associated with LA-NSCLC. A systematic review of the literature with evidence ratings was conducted to inform the appropriateness of treatment recommendations by the ARS AUC Thoracic Committee for the management of unresectable LA-NSCLC. Findings: Treatment appropriateness of a variety of LA-NSCLC scenarios was assessed by a consensus-based modified Delphi approach using a range of 3 points to 9 points to denote consensus agreement. Committee recommendations were vetted by the ARS AUC Executive Committee and a 2-week public comment period before official approval and adoption. Standard of care management of good prognosis LA-NSCLC consists of combined concurrent radical (60-70 Gy) platinum-based chemoradiation followed by consolidation durvalumab immunotherapy (for patients without progression). Planning and delivery of locally advanced lung cancer radiotherapy usually should be performed using intensity-modulated radiotherapy techniques. A variety of palliative and radical fractionation schedules are available to treat patients with poor performance and/or pulmonary status. The salvage therapy for a local recurrence after successful primary management is complex and likely requires both multidisciplinary input and shared decision-making with the patient. Conclusions and Relevance: Evidence-based guidance on the management of various unresectable LA-NSCLC scenarios is provided by the ARS AUC to optimize multidisciplinary patient care for this challenging patient population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Consensus , Societies, Medical , United States , Chemoradiotherapy/standards
6.
Eur J Cancer ; 201: 113972, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430868

ABSTRACT

It remains highly unclear and debatable whether combining radiotherapy (RT) and immune checkpoint blocker (ICB) therapy yields improved outcomes compared to either modality alone. Whereas some randomized data have shown improved outcomes, others have not. As a result of these conflicting data, it is essential to reconcile differences in the data and postulate reasons thereof. This work seeks to address these discrepancies, and uses the lessons learned from both positive and negative trials, including the most cutting-edge data available, in order to guide future clinical trial design and clarify the ideal/expected role of combinatorial therapy going forward. Because RT offers two distinct contributions (cytoreductive (local) effects & immune-stimulating (systemic) effects), RT should complement immunotherapy by addressing immunotherapy-resistant clones, and immunotherapy should complement RT by addressing RT-resistant or out-of-field clones. RT is not merely a single "drug", but rather a constellation of diverse "drugs" that can be varied based on dose regimens, previous systemic therapy regimens, number of irradiated sites, treatment intent/location/timing, tumor biology, and individual patient immunological circumstances. These factors are discussed as an important explanation for the discrepancies in results of various randomized trials in heterogeneous populations and clinical settings, and these discrepancies may continue until trials of more uniform circumstances are designed to use particular RT paradigms that meaningfully add value to systemic therapy.


Subject(s)
Immunotherapy , Radiosurgery , Humans , Combined Modality Therapy , Immunotherapy/methods , Radiosurgery/methods
7.
J Natl Compr Canc Netw ; 22(2): 72-81, 2024 03.
Article in English | MEDLINE | ID: mdl-38503043

ABSTRACT

Mesothelioma is a rare cancer that originates from the mesothelial surfaces of the pleura and other sites, and is estimated to occur in approximately 3,500 people in the United States annually. Pleural mesothelioma is the most common type and represents approximately 85% of these cases. The NCCN Guidelines for Mesothelioma: Pleural provide recommendations for the diagnosis, evaluation, treatment, and follow-up for patients with pleural mesothelioma. These NCCN Guidelines Insights highlight significant updates to the NCCN Guidelines for Mesothelioma: Pleural, including revised guidance on disease classification and systemic therapy options.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Pleura , Mesothelioma/diagnosis , Mesothelioma/therapy , Pleural Neoplasms/diagnosis , Pleural Neoplasms/therapy
8.
Cell Rep Med ; 5(3): 101463, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38471502

ABSTRACT

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.


Subject(s)
Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Tomography, X-Ray Computed , Prognosis
9.
Radiother Oncol ; 193: 110121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311031

ABSTRACT

INTRODUCTION: Adjuvant immunotherapy (IO) following concurrent chemotherapy and photon radiation therapy confers an overall survival (OS) benefit for patients with inoperable locally advanced non-small cell lung carcinoma (LA-NSCLC); however, outcomes of adjuvant IO after concurrent chemotherapy with proton beam therapy (CPBT) are unknown. We investigated OS and toxicity after CPBT with adjuvant IO versus CPBT alone for inoperable LA-NSCLC. MATERIALS AND METHODS: We analyzed 354 patients with LA-NSCLC who were prospectively treated with CPBT with or without adjuvant IO from 2009 to 2021. Optimal variable ratio propensity score matching (PSM) matched CPBT with CPBT + IO patients. Survival was estimated with the Kaplan-Meier method and compared with log-rank tests. Multivariable Cox proportional hazards regression evaluated the effect of IO on disease outcomes. RESULTS: Median age was 70 years; 71 (20%) received CPBT + IO and 283 (80%) received CPBT only. After PSM, 71 CPBT patients were matched with 71 CPBT + IO patients. Three-year survival rates for CPBT + IO vs CPBT were: OS 67% vs 30% (P < 0.001) and PFS 59% vs 35% (P = 0.017). Three-year LRFS (P = 0.137) and DMFS (P = 0.086) did not differ. Receipt of adjuvant IO was a strong predictor of OS (HR 0.40, P = 0.001) and PFS (HR 0.56, P = 0.030), but not LRFS (HR 0.61, P = 0.121) or DMFS (HR 0.61, P = 0.136). There was an increased incidence of grade ≥3 esophagitis in the CPBT-only group (6% CPBT + IO vs 17% CPBT, P = 0.037). CONCLUSION: This study, one of the first to investigate CPBT followed by IO for inoperable LA-NSCLC, showed that IO conferred survival benefits with no increased rates of toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proton Therapy , Humans , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Proton Therapy/adverse effects , Chemotherapy, Adjuvant , Lung Neoplasms/pathology , Immunotherapy/adverse effects , Retrospective Studies
10.
ArXiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38351927

ABSTRACT

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally-fractionated PBSPT due to concerns of amplified uncertainties at the larger dose per fraction. NRG Oncology and Particle Therapy Cooperative Group (PTCOG) Thoracic Subcommittee surveyed US proton centers to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Amongst other points, the recommendations highlight the need for volumetric image guidance and multiple CT-based robust optimization and robustness tools to minimize further the impact of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.

11.
Int J Radiat Oncol Biol Phys ; 119(4): 1208-1221, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38395086

ABSTRACT

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.


Subject(s)
Consensus , Proton Therapy , Radiation Dose Hypofractionation , Radiosurgery , Thoracic Neoplasms , Proton Therapy/methods , Humans , Radiosurgery/methods , Thoracic Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiation Oncology/standards , Practice Patterns, Physicians' , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , United States , Tomography, X-Ray Computed , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging
12.
Int J Radiat Oncol Biol Phys ; 118(5): 1404-1421, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38184173

ABSTRACT

Immunotherapeutic agents have revolutionized cancer treatment over the past decade. However, most patients fail to respond to immunotherapy alone. A growing body of preclinical studies highlights the potential for synergy between radiation therapy and immunotherapy, but the outcomes of clinical studies have been mixed. This review summarizes the current state of immunotherapy and radiation combination therapy across cancers, highlighting existing challenges and promising areas for future investigation.


Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Neoplasms/drug therapy , Immunotherapy , Combined Modality Therapy
13.
Anticancer Res ; 44(1): 133-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159979

ABSTRACT

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is increasingly detected in early stages and there is interest in improving outcomes with stereotactic body radiotherapy (SBRT). As metformin affects NSCLC signaling pathways, it might alter the metabolism of NSCLC treated with SBRT. This study investigated the long-term outcomes of a phase II clinical trial evaluating metformin in conjunction with SBRT for early-stage NSCLC. PATIENTS AND METHODS: The trial evaluated patients with American Joint Commission on Cancer (AJCC) 7th edition Stage I-II, cT1-T2N0M0 NSCLC who were randomized 6:1 to receive metformin versus placebo in conjunction with SBRT. The outcomes analyzed included local failure (LF), progression-free survival (PFS), overall survival (OS), and Common Terminology Criteria for Adverse Events (CTCAE) version 4 toxicities. RESULTS: There were 14 patients randomized to the metformin arm and one to the placebo. Median follow-up was four years. In the metformin group, the median PFS was 4.65 years [95% confidence interval (CI)=0.31-5.93] and median survival was 4.97 years (95%CI=3.05-4.61). Five year PFS was 27.8% (95%CI=5.3-57.3%) and OS was 46.0% (95%CI=16.0-71.9%). The one patient randomized to placebo was alive and without progression at five years. There were no LFs in the primary SBRT treatment volumes and no CTCAE version 4 Grade ≥3 adverse events. CONCLUSION: Outcomes of SBRT and metformin for early-stage NSCLC were similar to historic controls. These findings along with the results of the NRG-LU001 and OCOG randomized trials do not support the therapeutic use of metformin for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , Radiosurgery , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/etiology , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/etiology , Radiosurgery/adverse effects , Radiosurgery/methods , Metformin/therapeutic use , Prospective Studies , Small Cell Lung Carcinoma/etiology , Retrospective Studies
14.
J Am Coll Radiol ; 20(11S): S351-S381, 2023 11.
Article in English | MEDLINE | ID: mdl-38040460

ABSTRACT

Pediatric heart disease is a large and diverse field with an overall prevalence estimated at 6 to 13 per 1,000 live births. This document discusses appropriateness of advanced imaging for a broad range of variants. Diseases covered include tetralogy of Fallot, transposition of great arteries, congenital or acquired pediatric coronary artery abnormality, single ventricle, aortopathy, anomalous pulmonary venous return, aortopathy and aortic coarctation, with indications for advanced imaging spanning the entire natural history of the disease in children and adults, including initial diagnosis, treatment planning, treatment monitoring, and early detection of complications. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Subject(s)
Coronary Artery Disease , Heart Diseases , Adult , Child , Humans , Diagnosis, Differential , Diagnostic Imaging/methods , Societies, Medical , United States
15.
J Radiosurg SBRT ; 9(1): 75-82, 2023.
Article in English | MEDLINE | ID: mdl-38029015

ABSTRACT

Our randomized clinical study comparing stereotactic body radiotherapy (SBRT) and stereotactic body proton therapy (SBPT) for early stage non-small cell lung cancer (NSCLC) was closed prematurely owing to poor enrollment, largely because of lack of volumetric imaging and difficulty in obtaining insurance coverage for the SBPT group. In this article, we describe technology improvements in our new proton therapy center, particularly in image guidance with cone beam CT (CBCT) and CT on rail (CTOR), as well as motion management with real-time gated proton therapy (RGPT) and optical surface imaging. In addition, we have a treatment planning system that provides better treatment plan optimization and more accurate dose calculation. We expect to re-start the SBPT program, including for early stage NSCLC as well as for other disease sites soon after starting patient treatment at our new proton therapy center.

16.
J Natl Compr Canc Netw ; 21(9): 961-979, 2023 09.
Article in English | MEDLINE | ID: mdl-37673108

ABSTRACT

Mesothelioma is a rare cancer originating in mesothelial surfaces of the peritoneum, pleura, and other sites. These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) focus on peritoneal mesothelioma (PeM). The NCCN Guidelines for PeM provide recommendations for workup, diagnosis, and treatment of primary as well as previously treated PeM. The diagnosis of PeM may be delayed because PeM mimics other diseases and conditions and because the disease is so rare. The pathology section was recently updated to include new information about markers used to identify mesothelioma, which is difficult to diagnose. The term "malignant" is no longer used to classify mesotheliomas, because all mesotheliomas are now defined as malignant.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Medical Oncology , Mesothelioma/diagnosis , Mesothelioma/therapy , Peritoneum
17.
Cancer Res Commun ; 3(10): 2074-2081, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37728512

ABSTRACT

PURPOSE: RTOG 0617 was a phase III randomized trial for patients with unresectable stage IIIA/IIIB non-small cell lung cancer comparing standard-dose (60 Gy) versus high-dose (74 Gy) radiotherapy and chemotherapy, plus or minus cetuximab. Although the study was negative, based on prior evidence that patients with the KRAS-variant, an inherited germline mutation, benefit from cetuximab, we evaluated KRAS-variant patients in RTOG 0617. EXPERIMENTAL DESIGN: From RTOG 0617, 328 of 496 (66%) of patients were included in this analysis. For time-to-event outcomes, stratified log-rank tests and multivariable Cox regression models were used. For binary outcomes, Cochran-Mantel-Haenzel tests and multivariable logistic regression models were used. All statistical tests were two sided, and a P value <0.05 was considered significant. RESULTS: A total of 17.1% (56/328) of patients had the KRAS-variant, and overall survival rates were similar between KRAS-variant and non-variant patients. However, there was a time-dependent effect of cetuximab seen only in KRAS-variant patients-while the hazard of death was higher in cetuximab-treated patients within year 1 [HR = 3.37, 95% confidence interval (CI): 1.13-10.10, P = 0.030], death was lower from year 1 to 4 (HR = 0.33, 95% CI: 0.11-0.97, P = 0.043). In contrast, in non-variant patients, the addition of cetuximab significantly increased local failure (HR = 1.59, 95% CI: 1.11-2.28, P = 0.012). CONCLUSIONS/DISCUSSION: Although an overall survival advantage was not achieved in KRAS-variant patients, there is potential impact of cetuximab for this genetic subset of patients. In contrast, cetuximab seems to harm non-variant patients. These findings further support the importance of genetic patient selection in trials studying the addition of systemic agents to radiotherapy. SIGNIFICANCE: The KRAS-variant is the first functional, inherited miRNA-disrupting variant identified in cancer. Our findings support that cetuximab has a potentially beneficial impact on KRAS-variant patients treated with radiation. The work confirms prior evidence that KRAS-variant patients are a subgroup who are especially sensitive to radiation. These findings further support the potential of this class of variants to enable true treatment personalization, considering the equally important endpoints of response and toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Cetuximab/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Lung Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers
18.
Patterns (N Y) ; 4(8): 100777, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37602223

ABSTRACT

Survival models exist to study relationships between biomarkers and treatment effects. Deep learning-powered survival models supersede the classical Cox proportional hazards (CoxPH) model, but substantial performance drops were observed on high-dimensional features because of irrelevant/redundant information. To fill this gap, we proposed SwarmDeepSurv by integrating swarm intelligence algorithms with the deep survival model. Furthermore, four objective functions were designed to optimize prognostic prediction while regularizing selected feature numbers. When testing on multicenter sets (n = 1,058) of four different cancer types, SwarmDeepSurv was less prone to overfitting and achieved optimal patient risk stratification compared with popular survival modeling algorithms. Strikingly, SwarmDeepSurv selected different features compared with classical feature selection algorithms, including the least absolute shrinkage and selection operator (LASSO), with nearly no feature overlapping across these models. Taken together, SwarmDeepSurv offers an alternative approach to model relationships between radiomics features and survival endpoints, which can further extend to study other input data types including genomics.

19.
Lancet ; 402(10405): 871-881, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37478883

ABSTRACT

BACKGROUND: Stereotactic ablative radiotherapy (SABR) is the standard treatment for medically inoperable early-stage non-small-cell lung cancer (NSCLC), but regional or distant relapses, or both, are common. Immunotherapy reduces recurrence and improves survival in people with stage III NSCLC after chemoradiotherapy, but its utility in stage I and II cases is unclear. We therefore conducted a randomised phase 2 trial of SABR alone compared with SABR with immunotherapy (I-SABR) for people with early-stage NSCLC. METHODS: We did an open-label, randomised, phase 2 trial comparing SABR to I-SABR, conducted at three different hospitals in TX, USA. People aged 18 years or older with histologically proven treatment-naive stage IA-IB (tumour size ≤4 cm, N0M0), stage IIA (tumour size ≤5 cm, N0M0), or stage IIB (tumour size >5 cm and ≤7 cm, N0M0) as per the American Joint Committee on Cancer version 8 staging system or isolated parenchymal recurrences (tumour size ≤7 cm) NSCLC (TanyNanyM0 before definitive surgery or chemoradiotherapy) were included in this trial. Participants were randomly assigned (1:1; using the Pocock & Simon method) to receive SABR with or without four cycles of nivolumab (480 mg, once every 4 weeks, with the first dose on the same day as, or within 36 h after, the first SABR fraction). This trial was unmasked. The primary endpoint was 4-year event-free survival (local, regional, or distant recurrence; second primary lung cancer; or death). Analyses were both intention to treat (ITT) and per protocol. This trial is registered with ClinicalTrials.gov (NCT03110978) and is closed to enrolment. FINDINGS: From June 30, 2017, to March 22, 2022, 156 participants were randomly assigned, and 141 participants received assigned therapy. At a median 33 months' follow-up, I-SABR significantly improved 4-year event-free survival from 53% (95% CI 42-67%) with SABR to 77% (66-91%; per-protocol population, hazard ratio [HR] 0·38; 95% CI 0·19-0·75; p=0·0056; ITT population, HR 0·42; 95% CI 0·22-0·80; p=0·0080). There were no grade 3 or higher adverse events associated with SABR. In the I-SABR group, ten participants (15%) had grade 3 immunologial adverse events related to nivolumab; none had grade 3 pneumonitis or grade 4 or higher toxicity. INTERPRETATION: Compared with SABR alone, I-SABR significantly improved event-free survival at 4 years in people with early-stage treatment-naive or lung parenchymal recurrent node-negative NSCLC, with tolerable toxicity. I-SABR could be a treatment option in these participants, but further confirmation from a number of currently accruing phase 3 trials is required. FUNDING: Bristol-Myers Squibb and MD Anderson Cancer Center Alliance, National Cancer Institute at the National Institutes of Health through Cancer Center Core Support Grant and Clinical and Translational Science Award to The University of Texas MD Anderson Cancer Center.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Chronic Disease , Immunotherapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Neoplasm Staging , Nivolumab/adverse effects , Recurrence , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Treatment Outcome , Adolescent , Adult
20.
Lancet Digit Health ; 5(7): e404-e420, 2023 07.
Article in English | MEDLINE | ID: mdl-37268451

ABSTRACT

BACKGROUND: Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS: In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK negative NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS: Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION: This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. FUNDING: National Institutes of Health, Mark Foundation Damon Runyon Foundation Physician Scientist Award, MD Anderson Strategic Initiative Development Program, MD Anderson Lung Moon Shot Program, Andrea Mugnaini, and Edward L C Smith.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , United States , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , B7-H1 Antigen , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...