Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20238600

ABSTRACT

We explore the spatial and temporal spread of the novel SARS-CoV-2 virus under containment measures in three European countries based on fits to data of the early outbreak. Using data from Spain and Italy, we estimate an age dependent infection fatality ratio for SARS-CoV-2, as well as risks of hospitalization and intensive care admission. We use them in a model that simulates the dynamics of the virus using an age structured, spatially detailed agent based approach, that explicitly incorporates governamental interventions, changes in mobility and contact patterns occurred during the COVID-19 outbreak in each country. Our simulations reproduce several of the features of its spatio-temporal spread in the three countries studied. They show that containment measures combined with high density are responsible for the containment of cases within densely populated areas, and that spread to less densely populated areas occurred during the late stages of the first wave. The capability to reproduce observed features of the spatio-temporal dynamics of SARS-CoV-2 makes this model a potential candidate for forecasting the dynamics of SARS-CoV-2 in other settings, and we recommend its application in low and lower-middle countries which remain understudied.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20123448

ABSTRACT

BackgroundDuring the Covid-19 lockdown, contact clustering in social bubbles may allow extending contacts beyond the household at minimal additional risk and hence has been considered as part of modified lockdown policy or a gradual lockdown exit strategy. We estimated the impact of such strategies on epidemic and mortality risk using the UK as a case study. MethodsWe used an individual based model for a synthetic population similar to the UK, that is stratified into transmission risks from the community, within the household and from other households in the same social bubble. The base case considers a situation where non-essential shops and schools are closed, the secondary household attack rate is 20% and the initial reproduction number is 0.8. We simulate a number of strategies including variations of social bubbles, i.e. the forming of exclusive pairs of households, for particular subsets of households (households including children and single occupancy households), as well as for all households. We test the sensitivity of the results to a range of alternative model assumptions and parameters. ResultsClustering contacts outside the household into exclusive social bubbles is an effective strategy of increasing contacts while limiting some of the associated increase in epidemic risk. In the base case scenario social bubbles reduced cases and fatalities by 17% compared to an unclustered increase of contacts. We find that if all households were to form social bubbles the reproduction number would likely increase to 1.1 and therefore beyond the epidemic threshold of one. However, strategies that allow households with young children or single occupancy households to form social bubbles only increased the reproduction number by less than 10%. The corresponding increase in morbidity and mortality is proportional to the increase in the epidemic risk but is largely focussed in older adults independently of whether these are included in the social bubbles. ConclusionsSocial bubbles can be an effective way of extending contacts beyond the household limiting the increase in epidemic risk, if managed appropriately.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20059865

ABSTRACT

BackgroundThe first COVID-19 case in Kenya was confirmed on March 13th, 2020. Here, we provide forecasts for the potential incidence rate, and magnitude, of a COVID-19 epidemic in Kenya based on the observed growth rate and age distribution of confirmed COVID-19 cases observed in China, whilst accounting for the demographic and geographic dissimilarities between China and Kenya. MethodsWe developed a modelling framework to simulate SARS-CoV-2 transmission in Kenya, KenyaCoV. KenyaCoV was used to simulate SARS-CoV-2 transmission both within, and between, different Kenyan regions and age groups. KenyaCoV was parameterized using a combination of human mobility data between the defined regions, the recent 2019 Kenyan census, and estimates of age group social interaction rates specific to Kenya. Key epidemiological characteristics such as the basic reproductive number and the age-specific rate of developing COVID-19 symptoms after infection with SARS-CoV-2, were adapted for the Kenyan setting from a combination of published estimates and analysis of the age distribution of cases observed in the Chinese outbreak. ResultsWe find that if person-to-person transmission becomes established within Kenya, identifying the role of subclinical, and therefore largely undetected, infected individuals is critical to predicting and containing a very significant epidemic. Depending on the transmission scenario our reproductive number estimates for Kenya range from 1.78 (95% CI 1.44 -2.14) to 3.46 (95% CI 2.81-4.17). In scenarios where asymptomatic infected individuals are transmitting significantly, we expect a rapidly growing epidemic which cannot be contained only by case isolation. In these scenarios, there is potential for a very high percentage of the population becoming infected (median estimates: >80% over six months), and a significant epidemic of symptomatic COVID-19 cases. Exceptional social distancing measures can slow transmission, flattening the epidemic curve, but the risk of epidemic rebound after lifting restrictions is predicted to be high.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20028167

ABSTRACT

The outbreak of novel coronavirus (COVID-19) has the potential for global spread, infecting large numbers in all countries. In this case, estimating the country-specific basic reproductive ratio is a vital first step in public-health planning. The basic reproductive ratio (R0) is determined by both the nature of pathogen and the network of contacts through which the disease can spread - with this network determined by socio-demographics including age-structure and household composition. Here we focus on the age-structured transmission within the population, using data from China to inform age-dependent susceptibility and synthetic age-mixing matrices to inform the contact network. This allows us to determine the country-specific basic reproductive ratio as a multiplicative scaling of the value from China. We predict that R0 will be highest across Eastern Europe and Japan, and lowest across Africa, Central America and South-Western Asia. This pattern is largely driven by the ratio of children to older adults in each country and the observed propensity of clinical cases in the elderly.

SELECTION OF CITATIONS
SEARCH DETAIL
...