Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e7040, 2019.
Article in English | MEDLINE | ID: mdl-31198643

ABSTRACT

BACKGROUND: Microbial analyses performed in connection with the post-slaughter environment of farmed Atlantic salmon (Salmo salar L.) have mostly focused on specific bacteria that may have negative effects on the health of consumers. However, bacteria may also affect other quality variables. The objective of this study was to provide general knowledge about composition and dynamics of the bacterial communities present at slaughter and cold storage of farmed Atlantic salmon, as well as reveal any possible correlations to gelatinase activity, which may affect fillet quality. Thus, these data may provide a basis for optimization opportunities in the aquaculture industry. METHODS: Samples were taken from the digestive system harvested from 15 salmon immediately after slaughter. Another 17 salmon were taken from the processing line just before the final cleaning stage; of these eight were distributed in three iced storage boxes while the other nine were rinsed an extra time with industrial water before being distributed into another three storage boxes. In the following 6 days, samples were taken of skin mucus, liquids in the abdominal cavity and the storage ice. The compositions of the bacterial communities were analyzed by next-generation sequencing and gelatinase activity was measured in all samples except the storage ice. RESULTS: The bacterial communities in the digestive tract samples were dominated by the family Mycoplasmataceae. The genus Aliivibrio was also relatively abundant. Bacterial communities in the abdominal cavity were generally more diverse than the intestinal samples. However, all of the abdominal samples from storage box no. 3 had a high relative abundance of Mycoplasmataceae, and could not be distinguished from the intestinal samples (Q = 1.27, p = 0.633) while being significantly different from the other abdominal samples (Q = 9.02, p = 0.01). In addition, the abdominal samples from storage box no. 3 had a significantly higher gelatin degrading activity (Q = 9.43, p = 0.001) than those from the other storage boxes and similar to the high gelatinase activity in the intestinal samples. This indicated that in storage box no. 3 there was a transfer of intestinal fluids to the abdominal cavities, which was not removed by the cleaning procedure. There was a significant difference of the major phyla detected in the skin mucus of salmon rinsed an additional time, as these salmon had a higher relative amount of Firmicutes (F = 4.76, p = 0.04) and lower amount of Proteobacteria (F = 4.41, p = 0.047). CONCLUSIONS: The study showed a correlation between intestinal fluids and bacteria left in the abdominal cavity and gelatinase activity. This suggested that intestinal fluids and/or bacteria could enhance the degradation of connective tissue in the abdominal cavity and hence negatively affect the fillet quality. In addition, the study provided general knowledge of the composition and dynamics of bacterial communities present.

2.
J Chromatogr A ; 1104(1-2): 291-8, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16343517

ABSTRACT

A simple and fast direct extraction/methylation with methanolic hydrogen chloride was validated for determination of fatty acids (FA) in marine tissues. Three parameters: reaction time, temperature and presence of non-polar solvent, were studied by an experimental 2(3) full factorial design. The method was validated for five different types of samples; cod liver (high lipid content >60%, mainly triacylglycerol), cod muscle (low lipid content, approximately 1%, mainly phospholipids), cod plasma (lipid content, approximately 2%, mainly lipoprotein complex, high water amount), cod testis (lipid content approximately 3%, high levels of cholesterol), and herring muscle (lipid content approximately 7%). The one-step procedure for extraction/methylation of wet tissues was compared with the traditional procedure of extraction of the lipids by the Folch method (chloroform/methanol, 2:1, v/v), followed by methylation. The two methods gave similar FA profiles. The one-step extraction/methylation procedure gave a higher recovery of the total FA than the traditional procedure. Problems with carry-over peaks of cholesterol from previous samples were avoided by application of extra long GC temperature programs. The cholesterol decomposed to some degree under the preceding methanolysis step, giving several peaks in the chromatograms. The decomposition peaks were identified by mass spectrometry as cholestdienes originating from dehydration of cholesterol, a metylether of cholesterol and a cholesteryl chloride. These cholesterol artefacts can be used for quantitative determination of cholesterol in the samples. Standard samples of cholesterol were determined with high accuracy, (R(2)>0.99), and cholesterol in cod plasma was compared with good agreement (R(2)=0.97) to an enzymatic method.


Subject(s)
Cholesterol/analysis , Chromatography, Gas/methods , Fatty Acids/analysis , Fishes , Animals , Marine Biology , Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...