Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 7(1): txad019, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36911555

ABSTRACT

The dietary cation-anion difference (DCAD) has gotten much attention recently; however, there is not much evidence on organic matter digestibility, blood parameters, dry matter intake, body weight, and carcass features of male sheep fed with different DCAD diets. The effects of dietary cation-anion difference (DCAD) on these traits in male lambs under the environmental high temperatures were investigated in this study. Forty male lambs (average body weight of 39 kg) were randomly assigned to one of five treatments with eight replicates. Lambs were fed diets with DCAD levels ranging from 150 (control group) to 300, 450, 600, and 750 mEq/kg dry matter. This study lasted 100 d and used a 21-d adaptation. The results showed that the control group had the highest dry matter intake, dry matter digestibility, and crude protein digestibility (P = 0.02). Also, the lowest amount of average body weight was observed in the control group (P = 0.01). The results showed the different DCAD levels affected the statistical significance in terms of live weight, carcass weight, length and width of muscle cross section, lung weight, spleen weight, and abdominal fat (P = 0.04). As well, the highest ruminal pH was observed in the control group (P = 0.4). The results of the blood glucose parameter showed that control group had a significant effect on the blood glucose level (P = 0.04). Furthermore, the highest abdominal fat weight was observed in the control group (P = 0.04). There was no statistically significant difference between other traits, including skin weight, head weight, leg weight, carcass length, liver weight, kidney weight, heart weight, testicle weight, tail weight, rumen weight, and lactation weight. In summary, increasing DCAD in the diet could improve the production and carcass quality in lambs under environmental high temperatures.

2.
J Dairy Sci ; 104(12): 12994-13007, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34531053

ABSTRACT

The objective of this study was to investigate genetic variation and genotype by environment (G × E) interactions for fertility (including age at first calving and calving interval), somatic cell score (SCS), and milk production traits for Iranian Holsteins. Different environments were defined based on the climatic zones (cold, semi-cold, and moderate) and considering the herd location. Data were collected between 2003 and 2018 by the National Animal Breeding Center of Iran (Karaj). Variance and covariance components and genetic correlations were estimated using 2 different models, which were analyzed using Bayesian methods. For both models, performance of traits in each climate were considered as different traits. Fertility traits were analyzed using a trivariate model. Furthermore, SCS and production traits were analyzed using trivariate random regression models (records in different climate zones considered as different traits). For the fertility traits, the largest estimates of heritability were observed in cold climate. Fertility performance was always better in cold environment. Genetic correlations between climatic zones ranged from 0.85 to 0.94. For daily measurements of SCS and production traits, heritability ranged from 0.031 to 0.037 and 0.069 to 0.209, respectively. Genetic variances were the highest in the semi-cold and moderate climates for the SCS and production traits, respectively. Furthermore, across the studied climates, 305-d genetic correlation ranged from 0.756 to 0.884 for SCS and from 0.925 to 0.957 for the production traits. The structure of genetic correlation within each climate indicated a negative correlation between early and late lactation for SCS, especially in the cold climate and for milk production in the moderate climate. For fat percentage, in all climatic zones, the lowest genetic correlations were observed between early and mid-lactation. In addition, for protein production in the cold climate, a negative correlation was observed between early and late lactation. Results indicated heterogeneous variance components for all the studied traits across various climatic zones. Estimated genetic correlations for SCS revealed that the genetic expression of animals may vary by climatic zone. Results indicated the existence of G × E interaction due to the climatic condition, only for SCS. Therefore, in Iranian Holsteins, the effect of G × E interactions should not be neglected, especially for SCS, as different sires might be optimal for use in different climatic zones.


Subject(s)
Lactation , Milk , Animals , Bayes Theorem , Female , Fertility/genetics , Genotype , Iran , Lactation/genetics , Phenotype
3.
Asian-Australas J Anim Sci ; 31(9): 1387-1392, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29103290

ABSTRACT

OBJECTIVE: In a nucleus breeding scheme, the sire of dam's pathway plays an important role in producing genetic improvement. Selection proportion is the key parameter for predicting selection intensity, through truncating the normal distribution. Semen sexing using flow cytometry reduces the number of vials of sperm that can be obtained from a proved bull. In addition, a lower fertility of this kind of sperm is expected because of the lower sperm dosage in sex sorted semen. Both of these factors could affect the selection proportion in the sire of dam's pathway (pSD). METHODS: In the current study, through a deterministic simulation, effect of utilizing sex sorted semen on selection (pSD) was investigated in three different strategies including 1: continuous use of sex sorted semen in heifers (CS), 2: the use of sex sorted semen for the first two (S2) and 3: the first (S1) inseminations followed by conventional semen. RESULTS: Results indicated that the use of sex sorted semen has a negative impact on the sire of dams (SD) pathway due to increase in selection proportion. Consequently selection intensity was decreased by 10.24 to 20.57, 6.38 to 8.87 and 3.76 to 6.25 percent in the CS, S2, and S1 strategies, respectively. CONCLUSION: Considering the low effect of sexed semen on genetic improvement in dam pathways, it is necessary to consider the joint effect of using sex sorted semen on the sire and dams pathway to estimate about the real effect of sexed semen on genetic improvement in a nucleus breeding scheme.

SELECTION OF CITATIONS
SEARCH DETAIL
...