Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33600377

ABSTRACT

The splenic microenvironment regulates hematopoietic stem and progenitor cell (HSPC) function, particularly during demand-adapted hematopoiesis; however, practical strategies to enhance splenic support of transplanted HSPCs have proved elusive. We have previously demonstrated that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using the small molecule (+)SW033291 (PGDHi), increases BM prostaglandin E2 (PGE2) levels, expands HSPC numbers, and accelerates hematologic reconstitution after BM transplantation (BMT) in mice. Here we demonstrate that the splenic microenvironment, specifically 15-PGDH high-expressing macrophages, megakaryocytes (MKs), and mast cells (MCs), regulates steady-state hematopoiesis and potentiates recovery after BMT. Notably, PGDHi-induced neutrophil, platelet, and HSPC recovery were highly attenuated in splenectomized mice. PGDHi induced nonpathologic splenic extramedullary hematopoiesis at steady state, and pretransplant PGDHi enhanced the homing of transplanted cells to the spleen. 15-PGDH enzymatic activity localized specifically to macrophages, MK lineage cells, and MCs, identifying these cell types as likely coordinating the impact of PGDHi on splenic HSPCs. These findings suggest that 15-PGDH expression marks HSC niche cell types that regulate hematopoietic regeneration. Therefore, PGDHi provides a well-tolerated strategy to therapeutically target multiple HSC niches, promote hematopoietic regeneration, and improve clinical outcomes of BMT.


Subject(s)
Bone Marrow Cells/drug effects , Enzyme Inhibitors/pharmacology , Hematopoiesis, Extramedullary/drug effects , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Regeneration , Spleen/drug effects , Animals , Bone Marrow Cells/cytology , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Spleen/enzymology , Spleen/metabolism
2.
Sci Rep ; 10(1): 11657, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669620

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by interstitial remodeling and pulmonary dysfunction. The etiology of IPF is not completely understood but involves pathologic inflammation and subsequent failure to resolve fibrosis in response to epithelial injury. Treatments for IPF are limited to anti-inflammatory and immunomodulatory agents, which are only partially effective. Prostaglandin E2 (PGE2) disrupts TGFß signaling and suppresses myofibroblast differentiation, however practical strategies to raise tissue PGE2 during IPF have been limited. We previously described the discovery of a small molecule, (+)SW033291, that binds with high affinity to the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and increases PGE2 levels. Here we evaluated pulmonary 15-PGDH expression and activity and tested whether pharmacologic 15-PGDH inhibition (PGDHi) is protective in a mouse model of bleomycin-induced pulmonary fibrosis (PF). Long-term PGDHi was well-tolerated, reduced the severity of pulmonary fibrotic lesions and extracellular matrix remodeling, and improved pulmonary function in bleomycin-treated mice. Moreover, PGDHi attenuated both acute inflammation and weight loss, and decreased mortality. Endothelial cells and macrophages are likely targets as these cell types highly expressed 15-PGDH. In conclusion, PGDHi ameliorates inflammatory pathology and fibrosis in murine PF, and may have clinical utility to treat human disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dinoprostone/metabolism , Enzyme Inhibitors/pharmacology , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Pyridines/pharmacology , Thiophenes/pharmacology , Animals , Bleomycin/administration & dosage , Body Weight/drug effects , Dinoprostone/agonists , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Endothelial Cells/pathology , Extracellular Matrix/drug effects , Extracellular Matrix/enzymology , Female , Gene Expression , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/mortality , Inflammation , Lung/drug effects , Lung/enzymology , Lung/pathology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Respiratory Function Tests , Survival Analysis
3.
Biol Blood Marrow Transplant ; 26(8): 1552-1556, 2020 08.
Article in English | MEDLINE | ID: mdl-32422251

ABSTRACT

Aplastic anemia (AA) is a human immune-mediated bone marrow failure syndrome that is treated by stem cell transplantation for patients who have a matched related donor and by immunosuppressive therapy (IST) for those who do not. Responses to IST are variable, with patients still at risk for prolonged neutropenia, transfusion dependence, immune suppression, and severe opportunistic infections. Therefore, additional therapies are needed to accelerate hematologic recovery in patients receiving front-line IST. We have shown that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH) with the small molecule SW033291 (PGDHi) increases bone marrow (BM) prostaglandin E2 levels, expands hematopoietic stem cell (HSC) numbers, and accelerates hematologic reconstitution following murine BM transplantation. We now report that in a murine model of immune-mediated BM failure, PGDHi therapy mitigated cytopenias, increased BM HSC and progenitor cell numbers, and significantly extended survival compared with vehicle-treated mice. PGDHi protection was not immune-mediated, as serum IFN-γ levels and BM CD8+ T lymphocyte frequencies were not impacted. Moreover, dual administration of PGDHi plus low-dose IST enhanced total white blood cell, neutrophil, and platelet recovery, achieving responses similar to those seen with maximal-dose IST with lower toxicity. Taken together, these data demonstrate that PGDHi can complement IST to accelerate hematologic recovery and reduce morbidity in severe AA.


Subject(s)
Anemia, Aplastic , Hematopoietic Stem Cell Transplantation , Anemia, Aplastic/drug therapy , Animals , Bone Marrow Transplantation , Humans , Hydroxyprostaglandin Dehydrogenases , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...