Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34772158

ABSTRACT

This work was designed to evaluate the interlayer strength of 3D-printed mortar with postinstalled interlayer reinforcement. Two methods of postinstalled interlayer reinforcement were considered according to the amount of overlapping. The first method did not include overlapping of the interlayer reinforcement, while the second method included overlap lengths of 20 and 40 mm. Additionally, two different curing conditions were considered: air-curing conditions and water-curing conditions. The compressive, splitting tensile, and flexural tensile strengths of 3D-printed mortar specimens with different reinforcement methods and curing conditions were investigated under three loading directions. The three loading directions were defined based on the three planes of the printed specimens. The compressive, splitting tensile, and flexural tensile strengths were dependent on the loading directions. In particular, the splitting and flexural tensile strengths decreased considerably when tensile stresses acted on the interlayers of the 3D-printed mortar specimens. However, when longitudinal interlayer reinforcement penetrated the printed layers, the flexural tensile strength or interlayer bonding strength of the printed specimens increased significantly at the interlayers. In addition, mortar specimens reinforced with overlap lengths of 20 and 40 mm were investigated in this study. The flexural tensile strength or interlayer bonding strength of 3D-printed mortar decreased after treatment under air-curing conditions because the interlayers of the printed mortar formed more pores under these conditions and were more vulnerable under loading. Finally, the findings of this study suggested that interlayer reinforcement is a potential method for improving the interlayer bonding strength of 3D-printed mortar.

2.
Sensors (Basel) ; 21(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34641000

ABSTRACT

This research proposes a 3D internal visualization using ultrasonic pulse-echo tomography technique to evaluate accurately the state of concrete structures for their efficient maintenance within a limited budget. Synthetic aperture focusing technique (SAFT) is used as a post-processing algorithm to manipulate the data measured by the ultrasonic pulse-echo technique. Multifaceted measurements improve the weakness of the existing ultrasonic pulse-echo tomography technique that cannot identify the area beyond a reflector as well as the area located far away from measuring surfaces. The application of apodization factor, pulse peak delay calibration and elimination of trivial response not only complements the weaknesses of the SAFT algorithm but also improves the accuracy of the SAFT algorithm. The results show that the proposed method reduces the unnecessary surface noise and improves the expressiveness of the reflector's boundaries on the resulting images. It is expected that the proposed 3D internal visualization technique will provide a useful non-destructive evaluation tool in combination with another structure evaluation method.

3.
Materials (Basel) ; 13(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147741

ABSTRACT

Recently, 3D concrete printing has progressed rapidly in the construction industry. However, this technique still contains several factors that influence the buildability and mechanical properties of the printed concrete. Therefore, this study investigated the effects of the nozzle speed, the interlayer interval time, the rotations per minute (RPMs) of the screw in the 3D printing device, and the presence of lateral supports on the buildability of 3D concrete printing. In addition, this paper presents the results of the mechanical properties, including the compressive, splitting tensile, and flexural tensile strengths of 3D printed concrete. The buildability of 3D printed structures was improved with an extended interlayer interval time of up to 300 s. The printing processes were interrupted because of tearing of concrete filaments, which was related to excessive RPMs of the mixing screw. The test results also showed that a lateral support with a wide contact surface could improve the resistance to buckling failure for 3D printed structures. The test results of the mechanical properties of the 3D printed concrete specimens indicated that the compressive, splitting tensile, and flexural tensile strengths significantly depended on the bonding behavior at the interlayers of the printed specimens. In addition, although metal laths were expected to improve the tensile strength of the printed specimens, they adversely affected the tensile performance due to weak bonding between the reinforcements and concrete filaments.

4.
Sensors (Basel) ; 20(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105752

ABSTRACT

The construction of prestressed concrete bridges has witnessed a steep increase for the past 50 years worldwide. The constructed bridges exposed to various environmental conditions deteriorate all along their service life. One such degradation is corrosion, which can cause significant damage if it occurs on the main structural components, such as prestressing tendons. In this study, a novel non-destructive evaluation method to incorporate a movable yoke system with denoising algorithm based on kernel principal component analysis is developed and applied to identify the loss of cross-sectional area in corroded external prestressing tendons. The proposed method using denoised output voltage signals obtained from the measuring device appears to be a reliable and precise monitoring system to detect corrosion with less than 3% sectional loss.

5.
Materials (Basel) ; 13(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408664

ABSTRACT

Ultrahigh-performance concrete (UHPC) and high-strength concrete (HSC) are currently widely used because of their distinct superior properties. Thus, a comprehensive comparison of the flexural behavior of UHPC and HSC beams is presented in this study. Nine UHPC beams and three HSC beams were subjected to pure bending tests to investigate the effect of various reinforcement ratios and steel fiber volume contents on the cracking and failure patterns, load-deflection behavior, ductility, and flexural toughness of these beams. The addition of steel fibers in the UHPC improved the energy absorption capacity of the beams, causing the UHPC beams to fail via rebar fracture. The deflection and curvature ductility indices were determined and compared in this study. The ductility indices of the HSC beam tended to decrease sharply as the rebar ratio increased, whereas those of the UHPC beam did not show a clear trend with respect to the rebar ratio. In addition, a comparison between the results in this study and the results from previous studies was performed. In this study, the addition of steel fiber contents up to 1.5% in UHPC increased the load capacity, ductility, and flexural toughness of the UHPC beams, whereas the addition of a steel fiber content of 2.0% did not significantly increase the ductility or flexural toughness of the UHPC beams.

SELECTION OF CITATIONS
SEARCH DETAIL
...