Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 18: 1331859, 2024.
Article in English | MEDLINE | ID: mdl-38606201

ABSTRACT

Romantic relationships are defined by emotion dynamics, or how the emotions of one partner at a single timepoint can affect their own emotions and the emotions of their partner at the next timepoint. Previous research has shown that the level of these emotion dynamics plays a role in determining the state and quality of the relationship. However, this research has not examined whether the estimated emotion dynamics change over time, and how the change in these dynamics might relate to relationship outcomes, despite changes in dynamics being likely to occur. We examined whether the magnitude of variation in emotion dynamics over time was associated with relationship outcomes in a sample of 148 couples. Time-varying vector autoregressive models were used to estimate the emotion dynamics for each couple, and the average and standard deviation of the dynamics over time was related to relationship quality and relationship dissolution 1-2 years later. Our results demonstrate that certain autoregressive and cross-lagged parameters do show significant variation over time, and that this variation is associated with relationship outcomes. Overall, this study demonstrates the importance of accounting for change in emotion dynamics over time, and the relevance of this change to the prediction of future outcomes.

2.
Multivariate Behav Res ; 59(3): 482-501, 2024.
Article in English | MEDLINE | ID: mdl-38379320

ABSTRACT

Accelerated longitudinal designs allow researchers to efficiently collect longitudinal data covering a time span much longer than the study duration. One important assumption of these designs is that each cohort (a group defined by their age of entry into the study) shares the same longitudinal trajectory. Although previous research has examined the impact of violating this assumption when each cohort is defined by a single age of entry, it is possible that each cohort is instead defined by a range of ages, such as groups that experience a particular historical event. In this paper we examined how including cohort membership in linear and quadratic multilevel models performed in detecting and controlling for cohort effects in this scenario. Using a Monte Carlo simulation study, we assessed the performance of this approach under conditions related to the number of cohorts, the overlap between cohorts, the strength of the cohort effect, the number of affected parameters, and the sample size. Our results indicate that models including a proxy variable for cohort membership based on age at study entry performed comparably to using true cohort membership in detecting cohort effects accurately and returning unbiased parameter estimates. This indicates that researchers can control for cohort effects even when true cohort membership is unknown.


Subject(s)
Cohort Effect , Computer Simulation , Monte Carlo Method , Multilevel Analysis , Longitudinal Studies , Humans , Multilevel Analysis/methods , Computer Simulation/statistics & numerical data , Models, Statistical , Sample Size , Research Design
3.
Psychol Methods ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37428727

ABSTRACT

Continuous-time (CT) models are a flexible approach for modeling longitudinal data of psychological constructs. When using CT models, a researcher can assume one underlying continuous function for the phenomenon of interest. In principle, these models overcome some limitations of discrete-time (DT) models and allow researchers to compare findings across measures collected using different time intervals, such as daily, weekly, or monthly intervals. Theoretically, the parameters for equivalent models can be rescaled into a common time interval that allows for comparisons across individuals and studies, irrespective of the time interval used for sampling. In this study, we carry out a Monte Carlo simulation to examine the capability of CT autoregressive (CT-AR) models to recover the true dynamics of a process when the sampling interval is different from the time scale of the true generating process. We use two generating time intervals (daily or weekly) with varying strengths of the AR parameter and assess its recovery when sampled at different intervals (daily, weekly, or monthly). Our findings indicate that sampling at a faster time interval than the generating dynamics can mostly recover the generating AR effects. Sampling at a slower time interval requires stronger generating AR effects for satisfactory recovery, otherwise the estimation results show high bias and poor coverage. Based on our findings, we recommend researchers use sampling intervals guided by theory about the variable under study, and whenever possible, sample as frequently as possible. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

4.
Atten Percept Psychophys ; 84(5): 1432-1445, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35474414

ABSTRACT

When searching for an object, we use a target template in memory that contains task-relevant information to guide visual attention to potential targets and to determine the identity of attended objects. These processes in visual search have typically been assumed to rely on a common source of template information. However, our recent work (Yu et al., 2022) argued that attentional guidance and target-match decisions rely on different information during search, with guidance using a "fuzzier" version of the template compared with target decisions. However, that work was based on the special case of search for a target amongst linearly separable distractors (e.g., search for an orange target amongst yellower distractors). Real-world search targets, however, are infrequently linearly separable from distractors, and it remains unclear whether the differences between the precision of template information used for guidance compared with target decisions also applies under more typical conditions. In four experiments, we tested this question by varying distractor similarity during visual search and measuring the likelihood of attentional guidance to distractors and target misidentifications. We found that early attentional guidance is indeed less precise than that of subsequent match decisions under varying exposure durations and distractor set sizes. These results suggest that attentional guidance operates on a coarser code than decisions, perhaps because guidance is constrained by lower acuity in peripheral vision or the need to rapidly explore a wide region of space while decisions about selected objects are more precise to optimize decision accuracy.


Subject(s)
Visual Perception , Humans , Probability , Reaction Time
5.
Psychol Methods ; 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34928677

ABSTRACT

Ordinal data are extremely common in psychological research, with variables often assessed using Likert-type scales that take on only a few values. At the same time, researchers are increasingly fitting network models to ordinal item-level data. Yet very little work has evaluated how network estimation techniques perform when data are ordinal. We use a Monte Carlo simulation to evaluate and compare the performance of three estimation methods applied to either Pearson or polychoric correlations: extended Bayesian information criterion graphical lasso with regularized edge estimates ("EBIC"), Bayesian information criterion model selection with partial correlation edge estimates ("BIC"), and multiple regression with p-value-based edge selection and partial correlation edge estimates ("MR"). We vary the number and distribution of thresholds, distribution of the underlying continuous data, sample size, model size, and network density, and we evaluate results in terms of model structure (sensitivity and false positive rate) and edge weight bias. Our results show that the effect of treating the data as ordinal versus continuous depends primarily on the number of levels in the data, and that estimation performance was affected by the sample size, the shape of the underlying distribution, and the symmetry of underlying thresholds. Furthermore, which estimation method is recommended depends on the research goals: MR methods tended to maximize sensitivity of edge detection, BIC approaches minimized false positives, and either one of these produced accurate edge weight estimates in sufficiently large samples. We identify some particularly difficult combinations of conditions for which no method produces stable results. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

SELECTION OF CITATIONS
SEARCH DETAIL
...