Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548752

ABSTRACT

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Subject(s)
Glioblastoma , Lung Neoplasms , Humans , Glioblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation
3.
Nat Chem Biol ; 18(6): 615-624, 2022 06.
Article in English | MEDLINE | ID: mdl-35332332

ABSTRACT

The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.


Subject(s)
Histone Demethylases , Monoacylglycerol Lipases , Biomarkers , Cell Survival , Drug Combinations , Histone Demethylases/metabolism , Humans
4.
Nat Genet ; 53(12): 1664-1672, 2021 12.
Article in English | MEDLINE | ID: mdl-34857952

ABSTRACT

Although single-gene perturbation screens have revealed a number of new targets, vulnerabilities specific to frequently altered drivers have not been uncovered. An important question is whether the compensatory relationship between functionally redundant genes masks potential therapeutic targets in single-gene perturbation studies. To identify digenic dependencies, we developed a CRISPR paralog targeting library to investigate the viability effects of disrupting 3,284 genes, 5,065 paralog pairs and 815 paralog families. We identified that dual inactivation of DUSP4 and DUSP6 selectively impairs growth in NRAS and BRAF mutant cells through the hyperactivation of MAPK signaling. Furthermore, cells resistant to MAPK pathway therapeutics become cross-sensitized to DUSP4 and DUSP6 perturbations such that the mechanisms of resistance to the inhibitors reinforce this mechanism of vulnerability. Together, multigene perturbation technologies unveil previously unrecognized digenic vulnerabilities that may be leveraged as new therapeutic targets in cancer.


Subject(s)
Dual Specificity Phosphatase 6/genetics , Dual-Specificity Phosphatases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Phosphatases/genetics , Neoplasms/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Enzyme Activation , GTP Phosphohydrolases/genetics , Gene Knockout Techniques , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Membrane Proteins/genetics , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics
5.
Mol Cancer Res ; 19(6): 1015-1025, 2021 06.
Article in English | MEDLINE | ID: mdl-33619228

ABSTRACT

FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.


Subject(s)
BRCA1 Protein/genetics , DNA Helicases/genetics , DNA Mutational Analysis/methods , Fanconi Anemia Complementation Group Proteins/genetics , Mutation/genetics , Neoplasms/genetics , RNA Helicases/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Codon, Nonsense , Cross-Linking Reagents/pharmacology , Gene Knockout Techniques , HeLa Cells , Humans , Loss of Function Mutation , Mitomycin/pharmacology , Mutation/drug effects , Mutation, Missense , Neoplasms/pathology
6.
BMC Biol ; 18(1): 177, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33234154

ABSTRACT

BACKGROUND: Many biological processes, such as cancer metastasis, organismal development, and acquisition of resistance to cytotoxic therapy, rely on the emergence of rare sub-clones from a larger population. Understanding how the genetic and epigenetic features of diverse clones affect clonal fitness provides insight into molecular mechanisms underlying selective processes. While large-scale barcoding with NGS readout has facilitated cellular fitness assessment at the population level, this approach does not support characterization of clones prior to selection. Single-cell genomics methods provide high biological resolution, but are challenging to scale across large populations to probe rare clones and are destructive, limiting further functional analysis of important clones. RESULTS: Here, we develop CloneSifter, a methodology for tracking and enriching rare clones throughout their response to selection. CloneSifter utilizes a CRISPR sgRNA-barcode library that facilitates the isolation of viable cells from specific clones within the barcoded population using a sequence-specific retrieval reporter. We demonstrate that CloneSifter can measure clonal fitness of cancer cell models in vitro and retrieve targeted clones at abundance as low as 1 in 1883 in a heterogeneous cell population. CONCLUSIONS: CloneSifter provides a means to track and access specific and rare clones of interest across dynamic changes in population structure to comprehensively explore the basis of these changes.


Subject(s)
Cloning, Organism/methods , Clustered Regularly Interspaced Short Palindromic Repeats , RNA/metabolism , Cells, Cultured , Clone Cells
7.
Clin Cancer Res ; 26(18): 4995-5006, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32631955

ABSTRACT

PURPOSE: Rhabdoid tumors are devastating pediatric cancers in need of improved therapies. We sought to identify small molecules that exhibit in vitro and in vivo efficacy against preclinical models of rhabdoid tumor. EXPERIMENTAL DESIGN: We screened eight rhabdoid tumor cell lines with 481 small molecules and compared their sensitivity with that of 879 other cancer cell lines. Genome-scale CRISPR-Cas9 inactivation screens in rhabdoid tumors were analyzed to confirm target vulnerabilities. Gene expression and CRISPR-Cas9 data were queried across cell lines and primary rhabdoid tumors to discover biomarkers of small-molecule sensitivity. Molecular correlates were validated by manipulating gene expression. Subcutaneous rhabdoid tumor xenografts were treated with the most effective drug to confirm in vitro results. RESULTS: Small-molecule screening identified the protein-translation inhibitor homoharringtonine (HHT), an FDA-approved treatment for chronic myelogenous leukemia (CML), as the sole drug to which all rhabdoid tumor cell lines were selectively sensitive. Validation studies confirmed the sensitivity of rhabdoid tumor to HHT was comparable with that of CML cell lines. Low expression of the antiapoptotic gene BCL2L1, which encodes Bcl-XL, was the strongest predictor of HHT sensitivity, and HHT treatment consistently depleted Mcl-1, the synthetic-lethal antiapoptotic partner of Bcl-XL. Rhabdoid tumor cell lines and primary-tumor samples expressed low BCL2L1, and overexpression of BCL2L1 induced resistance to HHT in rhabdoid tumor cells. Furthermore, HHT treatment inhibited rhabdoid tumor cell line and patient-derived xenograft growth in vivo. CONCLUSIONS: Rhabdoid tumor cell lines and xenografts are highly sensitive to HHT, at least partially due to their low expression of BCL2L1. HHT may have therapeutic potential against rhabdoid tumors.


Subject(s)
Homoharringtonine/pharmacology , Protein Biosynthesis/drug effects , Rhabdoid Tumor/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Homoharringtonine/therapeutic use , Humans , Mice , Rhabdoid Tumor/pathology , Xenograft Model Antitumor Assays , bcl-X Protein/genetics
8.
Cell Syst ; 10(1): 52-65.e7, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31668800

ABSTRACT

Cancer evolution poses a central obstacle to cure, as resistant clones expand under therapeutic selection pressures. Genome sequencing of relapsed disease can nominate genomic alterations conferring resistance but sample collection lags behind, limiting therapeutic innovation. Genome-wide screens offer a complementary approach to chart the compendium of escape genotypes, anticipating clinical resistance. We report genome-wide open reading frame (ORF) resistance screens for first- and third-generation epidermal growth factor receptor (EGFR) inhibitors and a MEK inhibitor. Using serial sampling, dose gradients, and mathematical modeling, we generate genotype-fitness maps across therapeutic contexts and identify alterations that escape therapy. Our data expose varying dose-fitness relationship across genotypes, ranging from complete dose invariance to paradoxical dose dependency where fitness increases in higher doses. We predict fitness with combination therapy and compare these estimates to genome-wide fitness maps of drug combinations, identifying genotypes where combination therapy results in unexpected inferior effectiveness. These data are applied to nominate combination optimization strategies to forestall resistant disease.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Acrylamides/administration & dosage , Acrylamides/pharmacology , Adenocarcinoma of Lung/enzymology , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride/administration & dosage , Erlotinib Hydrochloride/pharmacology , Genetic Fitness , Genotype , Humans , Lung Neoplasms/enzymology , MAP Kinase Signaling System
9.
Cancer Cell ; 36(4): 369-384.e13, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31543463

ABSTRACT

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mitochondria/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Clonal Evolution/drug effects , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mice , Middle Aged , Mitochondria/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oxidative Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Mol Cancer Res ; 17(11): 2281-2293, 2019 11.
Article in English | MEDLINE | ID: mdl-31462500

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is often sensitive to initial treatment with platinum and taxane combination chemotherapy, but most patients relapse with chemotherapy-resistant disease. To systematically identify genes modulating chemotherapy response, we performed pooled functional genomic screens in HGSOC cell lines treated with cisplatin, paclitaxel, or cisplatin plus paclitaxel. Genes in the intrinsic pathway of apoptosis were among the top candidate resistance genes in both gain-of-function and loss-of-function screens. In an open reading frame overexpression screen, followed by a mini-pool secondary screen, anti-apoptotic genes including BCL2L1 (BCL-XL) and BCL2L2 (BCL-W) were associated with chemotherapy resistance. In a CRISPR-Cas9 knockout screen, loss of BCL2L1 decreased cell survival whereas loss of proapoptotic genes promoted resistance. To dissect the role of individual anti-apoptotic proteins in HGSOC chemotherapy response, we evaluated overexpression or inhibition of BCL-2, BCL-XL, BCL-W, and MCL1 in HGSOC cell lines. Overexpression of anti-apoptotic proteins decreased apoptosis and modestly increased cell viability upon cisplatin or paclitaxel treatment. Conversely, specific inhibitors of BCL-XL, MCL1, or BCL-XL/BCL-2, but not BCL-2 alone, enhanced cell death when combined with cisplatin or paclitaxel. Anti-apoptotic protein inhibitors also sensitized HGSOC cells to the poly (ADP-ribose) polymerase inhibitor olaparib. These unbiased screens highlight anti-apoptotic proteins as mediators of chemotherapy resistance in HGSOC, and support inhibition of BCL-XL and MCL1, alone or combined with chemotherapy or targeted agents, in treatment of primary and recurrent HGSOC. IMPLICATIONS: Anti-apoptotic proteins modulate drug resistance in ovarian cancer, and inhibitors of BCL-XL or MCL1 promote cell death in combination with chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Drug Resistance, Neoplasm , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Ovarian Neoplasms/genetics , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/pharmacology , Female , Genomics , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , bcl-X Protein/genetics , bcl-X Protein/metabolism
11.
J Clin Invest ; 129(11): 5005-5019, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31437130

ABSTRACT

The interleukin-3 receptor α subunit, CD123, is expressed in many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown. We interrogated tagraxofusp resistance in patients and experimental models and found that it was not associated with CD123 loss. Rather, resistant AML and BPDCN cells frequently acquired deficiencies in the diphthamide synthesis pathway, impairing tagraxofusp's ability to ADP-ribosylate cellular targets. Expression of DPH1, encoding a diphthamide pathway enzyme, was reduced by DNA CpG methylation in resistant cells. Treatment with the DNA methyltransferase inhibitor azacitidine restored DPH1 expression and tagraxofusp sensitivity. We also developed a drug-dependent ADP-ribosylation assay in primary cells that correlated with tagraxofusp activity and may represent an additional novel biomarker. As predicted by these results and our observation that resistance also increased mitochondrial apoptotic priming, we found that the combination of tagraxofusp and azacitidine was effective in patient-derived xenografts treated in vivo. These data have important implications for clinical use of tagraxofusp and led to a phase 1 study combining tagraxofusp and azacitidine in myeloid malignancies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Dendritic Cells/metabolism , Drug Delivery Systems , Hematologic Neoplasms , Interleukin-3 Receptor alpha Subunit/metabolism , Leukemia, Myeloid, Acute , Neoplasm Proteins/metabolism , Animals , Azacitidine/pharmacology , Cell Line, Tumor , DNA Methylation , Dendritic Cells/pathology , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Nude , Minor Histocompatibility Antigens/metabolism , Recombinant Fusion Proteins/pharmacology , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
12.
Cancer Res ; 79(9): 2352-2366, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30819666

ABSTRACT

Combinatorial inhibition of MEK1/2 and CDK4/6 is currently undergoing clinical investigation in NRAS-mutant melanoma. To prospectively map the landscape of resistance to this investigational regimen, we utilized a series of gain- and loss-of-function forward genetic screens to identify modulators of resistance to clinical inhibitors of MEK1/2 and CDK4/6 alone and in combination. First, we identified NRAS-mutant melanoma cell lines that were dependent on NRAS for proliferation and sensitive to MEK1/2 and CDK4/6 combination treatment. We then used a genome-scale ORF overexpression screen and a CRISPR knockout screen to identify modulators of resistance to each inhibitor alone or in combination. These orthogonal screening approaches revealed concordant means of achieving resistance to this therapeutic modality, including tyrosine kinases, RAF, RAS, AKT, and PI3K signaling. Activated KRAS was sufficient to cause resistance to combined MEK/CDK inhibition and to replace genetic depletion of oncogenic NRAS. In summary, our comprehensive functional genetic screening approach revealed modulation of resistance to the inhibition of MEK1/2, CDK4/6, or their combination in NRAS-mutant melanoma. SIGNIFICANCE: These findings reveal that NRAS-mutant melanomas can acquire resistance to genetic ablation of NRAS or combination MEK1/2 and CDK4/6 inhibition by upregulating activity of the RTK-RAS-RAF and RTK-PI3K-AKT signaling cascade.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , GTP Phosphohydrolases/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Melanoma/drug therapy , Membrane Proteins/genetics , Mutation , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Humans , Melanoma/genetics , Melanoma/pathology , Phosphorylation , Signal Transduction/drug effects , Tumor Cells, Cultured
13.
Nat Genet ; 50(10): 1381-1387, 2018 10.
Article in English | MEDLINE | ID: mdl-30224644

ABSTRACT

Unlike most tumor suppressor genes, the most common genetic alterations in tumor protein p53 (TP53) are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3-8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53 wild-type and null cell lines. We found that loss or dominant-negative inhibition of wild-type p53 function reliably enhanced cellular fitness. By integrating these data with the Catalog of Somatic Mutations in Cancer (COSMIC) mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.


Subject(s)
Mutagenesis/physiology , Mutation , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , A549 Cells , Alleles , CRISPR-Cas Systems , Cells, Cultured , DNA Mutational Analysis , Databases, Genetic , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/pathology , Sequence Analysis, DNA
14.
Cancer Cell ; 33(5): 801-815, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29763622

ABSTRACT

Despite advances in cancer biology and therapeutics, drug resistance remains problematic. Resistance is often multifactorial, heterogeneous, and prone to undersampling. Nonetheless, many individual mechanisms of targeted therapy resistance may coalesce into a smaller number of convergences, including pathway reactivation (downstream re-engagement of original effectors), pathway bypass (recruitment of a parallel pathway converging on the same downstream output), and pathway indifference (development of a cellular state independent of the initial therapeutic target). Similar convergences may also underpin immunotherapy resistance. Such parsimonious, convergence-based frameworks may help explain resistance across tumor types and therapeutic categories and may also suggest strategies to overcome it.


Subject(s)
Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Neoplasms/metabolism , Humans , Immunotherapy , Molecular Targeted Therapy , Neoplasms/drug therapy , Precision Medicine
15.
Nat Commun ; 8(1): 1324, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109393

ABSTRACT

Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.


Subject(s)
Cell-Free Nucleic Acids/genetics , DNA, Neoplasm/genetics , Exome Sequencing/methods , Neoplasm Metastasis/genetics , Antigens, Neoplasm/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/secondary , Cell-Free Nucleic Acids/blood , DNA Mutational Analysis , DNA, Neoplasm/blood , Female , Gene Dosage , Humans , Male , Neoplasm Metastasis/drug therapy , Prospective Studies , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/secondary , Software , Exome Sequencing/statistics & numerical data
16.
PLoS One ; 12(1): e0170445, 2017.
Article in English | MEDLINE | ID: mdl-28118392

ABSTRACT

CRISPR/Cas9 screening has proven to be a versatile tool for genomics research. Based on unexpected results from a genome-wide screen, we developed a CRISPR/Cas9-mediated approach to mutagenesis, exploiting the allelic diversity generated by error-prone non-homologous end-joining (NHEJ) to identify novel gain-of-function and drug resistant alleles of the MAPK signaling pathway genes MEK1 and BRAF. We define the parameters of a scalable technique to easily generate cell populations containing thousands of endogenous allelic variants to map gene functions. Further, these results highlight an unexpected but important phenomenon, that Cas9-induced gain-of-function alleles are an inherent by-product of normal Cas9 loss-of-function screens and should be investigated during analysis of data from large-scale positive selection screens.


Subject(s)
CRISPR-Cas Systems , MAP Kinase Kinase 1/genetics , Mutagenesis , Protein Engineering/methods , Proto-Oncogene Proteins B-raf/genetics , Alleles , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , DNA End-Joining Repair , Gene Library , HEK293 Cells , Humans , INDEL Mutation , Indoles/pharmacology , MAP Kinase Kinase 1/chemistry , Phenotype , Proto-Oncogene Proteins B-raf/chemistry , RNA, Guide, Kinetoplastida/genetics , Recombinant Fusion Proteins/chemistry , Sequence Alignment , Sulfonamides/pharmacology , Transduction, Genetic , Vemurafenib
17.
Cell Rep ; 17(4): 1171-1183, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760319

ABSTRACT

Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84%) missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology.


Subject(s)
Mitogen-Activated Protein Kinase 1/genetics , Mutation, Missense/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Dual Specificity Phosphatase 6/metabolism , Humans , Models, Molecular , Phenotype , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Reproducibility of Results
18.
Nat Biotechnol ; 34(5): 539-46, 2016 05.
Article in English | MEDLINE | ID: mdl-27088724

ABSTRACT

Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of ß-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Mapping/methods , Genome-Wide Association Study/methods , Neoplasm Proteins/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Drug Resistance, Neoplasm/genetics , Genes, Neoplasm/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Humans , Mutation/genetics , Neoplasms/diagnosis , Signal Transduction/genetics
19.
Science ; 352(6282): 189-96, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27124452

ABSTRACT

To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.


Subject(s)
Melanoma/genetics , Melanoma/secondary , Skin Neoplasms/pathology , Tumor Microenvironment , Base Sequence , Cell Communication , Cell Cycle , Drug Resistance, Neoplasm/genetics , Endothelial Cells/pathology , Genomics , Humans , Immunotherapy , Lymphocyte Activation , Melanoma/therapy , Microphthalmia-Associated Transcription Factor/metabolism , Neoplasm Metastasis , RNA/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome
20.
Cancer Cell ; 27(3): 397-408, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25759024

ABSTRACT

We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein-coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein-kinase-C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors, whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naive controls, supporting a role for these identified mechanisms in clinical ALK inhibitor resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Crizotinib , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/genetics , Receptors, Purinergic P2Y/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...