Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Redox Biol ; 73: 103192, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776754

ABSTRACT

BACKGROUND: In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM: To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS: Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS: SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and ß-oxidation (FDR = 0.02). CONCLUSION: SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.


Subject(s)
Adipose Tissue , Amino Acids, Sulfur , Obesity , Overweight , Humans , Obesity/metabolism , Obesity/genetics , Male , Female , Overweight/metabolism , Overweight/genetics , Adult , Middle Aged , Adipose Tissue/metabolism , Amino Acids, Sulfur/metabolism , Amino Acids, Sulfur/blood , Metabolome , Gene Expression Regulation
2.
J Transl Med ; 22(1): 40, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195568

ABSTRACT

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS: N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS: SAAR led to a ~ 20% greater weight loss compared to controls (ß 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION: Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS: gov/study/NCT04701346.


Subject(s)
Amino Acids, Sulfur , Overweight , Female , Humans , Male , Ketone Bodies , Leptin , Obesity , Weight Loss
3.
Nat Commun ; 14(1): 3109, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253747

ABSTRACT

Antibody-based blocking of vascular endothelial growth factor (VEGF) reduces choroidal neovascularization (CNV) and retinal edema, rescuing vision in patients with neovascular age-related macular degeneration (nAMD). However, poor response and resistance to anti-VEGF treatment occurs. We report that targeting the Notch ligand Jagged1 by a monoclonal antibody reduces neovascular lesion size, number of activated phagocytes and inflammatory markers and vascular leakage in an experimental CNV mouse model. Additionally, we demonstrate that Jagged1 is expressed in mouse and human eyes, and that Jagged1 expression is independent of VEGF signaling in human endothelial cells. When anti-Jagged1 was combined with anti-VEGF in mice, the decrease in lesion size exceeded that of either antibody alone. The therapeutic effect was solely dependent on blocking, as engineering antibodies to abolish effector functions did not impair the therapeutic effect. Targeting of Jagged1 alone or in combination with anti-VEGF may thus be an attractive strategy to attenuate CNV-bearing diseases.


Subject(s)
Choroidal Neovascularization , Vascular Endothelial Growth Factor A , Humans , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Choroidal Neovascularization/pathology , Antibodies, Blocking/therapeutic use , Signal Transduction/physiology , Disease Models, Animal , Angiogenesis Inhibitors/therapeutic use
4.
J Allergy Clin Immunol ; 152(1): 278-289.e6, 2023 07.
Article in English | MEDLINE | ID: mdl-36893861

ABSTRACT

BACKGROUND: Regulatory T (Treg) CD4 cells in mouse gut are mainly specific for intestinal antigens and play an important role in the suppression of immune responses against harmless dietary antigens and members of the microbiota. However, information about the phenotype and function of Treg cells in the human gut is limited. OBJECTIVE: We performed a detailed characterization of Foxp3+ CD4 Treg cells in human normal small intestine (SI) as well as from transplanted duodenum and celiac disease lesions. METHODS: Treg cells and conventional CD4 T cells derived from SI were subjected to extensive immunophenotyping and their suppressive activity and ability to produce cytokines assessed. RESULTS: SI Foxp3+ CD4 T cells were CD45RA-CD127-CTLA-4+ and suppressed proliferation of autologous T cells. Approximately 60% of Treg cells expressed the transcription factor Helios. When stimulated, Helios-negative Treg cells produced IL-17, IFN-γ, and IL-10, whereas Helios-positive Treg cells produced very low levels of these cytokines. By sampling mucosal tissue from transplanted human duodenum, we demonstrated that donor Helios-negative Treg cells persisted for at least 1 year after transplantation. In normal SI, Foxp3+ Treg cells constituted only 2% of all CD4 T cells, while in active celiac disease, both Helios-negative and Helios-positive subsets expanded 5- to 10-fold. CONCLUSION: The SI contains 2 subsets of Treg cells with different phenotypes and functional capacities. Both subsets are scarce in healthy gut but increase dramatically in active celiac disease.


Subject(s)
Celiac Disease , T-Lymphocytes, Regulatory , Humans , Animals , Mice , Cytokines , Intestine, Small , Forkhead Transcription Factors , T-Lymphocyte Subsets
5.
J Pediatr Gastroenterol Nutr ; 76(4): 434-439, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36727903

ABSTRACT

OBJECTIVES: Jejunoileal atresia is a common cause of neonatal intestinal obstruction. Results of long-term outcome are very limited. The aim of this study was to describe perioperative and postoperative outcome, and to evaluate long-term gastrointestinal quality of life (QoL) in patients treated for jejunoileal atresia. METHODS: We conducted a combined retrospective and cross-sectional observational study of patients treated for jejunoileal atresia during 2001-2019. Perioperative data were registered, and complications were classified according to the Clavien-Dindo classification. To evaluate long-term clinical status and QoL, the PedsQL Gastrointestinal Symptoms Scales questionnaire and a self-designed questionnaire were used. Approval from the Data Protection Office was obtained. RESULTS: Seventy patients were included in the retrospective part of the study. Of these, 70% got a primary anastomosis. Concomitant anomalies were registered in 46%. Median length of stay was 28 (5-140) days. Early (<28 days) complication rate was 66%. Early abdominal surgical reinterventions were performed in 11%, most frequently due to anastomotic leak. Late (>28 days) abdominal surgical reinterventions were performed in 21%, and most commonly for bowel obstruction. Overall mortality rate was 4%. Thirty-two patients with median 8 (2-19) years returned the questionnaires. Overall gastrointestinal QoL was good. However, concomitant gastrointestinal anomalies were associated with impaired outcome. Embarrassment of the scar was reported in 38%. Three (9%) patients used medication (laxatives, proton pump inhibitor) for gastrointestinal symptoms. CONCLUSIONS: Jejunoileal atresia is associated with significant morbidity during initial treatment. Despite this, the majority of the patients have excellent long-term outcomes.


Subject(s)
Intestinal Atresia , Intestinal Obstruction , Humans , Infant, Newborn , Quality of Life , Retrospective Studies , Cross-Sectional Studies , Treatment Outcome , Intestinal Atresia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...