Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 127(22): 8098-102, 2005 Jun 08.
Article in English | MEDLINE | ID: mdl-15926836

ABSTRACT

A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion. As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo(2)C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals.

2.
J Colloid Interface Sci ; 279(1): 158-66, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15380425

ABSTRACT

The oxidation of tetramethylthiourea (TMTU) at gold electrodes in acetonitrile, leading to dissolution of the electrode, has been studied by electrochemical methods and by an electrochemical quartz crystal microbalance (EQCM). TMTU in acetonitrile readily adsorbs at gold electrodes and an estimated coverage of 5.5 x 10(-10) mol cm(-2) (30 A2 per molecule) was measured electrochemically. Nevertheless, the oxidation of TMTU in solution is a diffusion-controlled process and is strongly influenced by the electrode material, as observed by comparison of gold electrodes with glassy carbon and platinum working electrodes. In the absence of TMTU, EQCM cyclic voltammetry experiments showed dissolution of gold through a 1e- oxidation process at potentials more positive than 1.20 V vs saturated calomel electrode (SCE). Potential step and cyclic voltammetry EQCM experiments performed using gold surfaces in the presence of TMTU revealed TMTU-assisted etching of gold at potentials as low as 0.35 V vs SCE. In the potential region from 0.35 to 1.20 V the current response of TMTU oxidation mimics the response expected for a redox-active species in solution, including the presence of a mass-transfer-limited region, which supports the conclusion that the etching process in this potential region is initiated by the oxidation of TMTU at the gold surface. The current efficiency of the TMTU-assisted etching was found to vary between 12 electrons per gold atom dissolved (e/Au) (E = 0.50 V vs SCE) and 2 e/Au (0.90 V < E < 1.20 V). At potentials <0.90 V the dominant electrochemical process is the formation of TMTU+, whereas at higher potentials the etching of the gold surface by formation of a Au(I)-TMTU+ species becomes equally important. At potentials above 1.20 V the etching is no longer dependent on the diffusion of TMTU and the e/Au value approaches 1.


Subject(s)
Gold/chemistry , Quartz , Thiourea/analogs & derivatives , Thiourea/chemistry , Acetonitriles/chemistry , Electrochemistry , Microchemistry/instrumentation , Oxidation-Reduction , Surface Properties
3.
Solid State Nucl Magn Reson ; 24(4): 218-35, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14642418

ABSTRACT

14N Magic-angle spinning (MAS) NMR spectra for a number of polycrystalline, symmetrical tetraalkylammonium halides with short alkyl chains (C2H(5)- to n-C4H(9)-) have been recorded following a careful setup of the experimental conditions. Analysis of the spectra demonstrates the presence of 14N chemical shift anisotropies (CSAs) on the order of |delta sigma| = 10-30 ppm along with 14N quadrupole coupling constants in the range of 10-70 kHz. The magnitude and sign of the CSAs determined from 14N MAS NMR are confirmed by recording and analysis of the corresponding slow-speed spinning (500-650 Hz) 15N CP/MAS NMR spectra. Most interestingly, it is observed experimentally and demonstrated theoretically and by simulations, that these CSAs are reflected in the spinning sideband (ssb) intensities of the 14N MAS spectra at much higher spinning speeds than can be applied to retrieve the corresponding 15N CSAs from the ssb pattern in the 15N CP/MAS spectra.

4.
J Am Chem Soc ; 125(44): 13370-1, 2003 Nov 05.
Article in English | MEDLINE | ID: mdl-14583028

ABSTRACT

Mesoporous zeolite single-crystal catalysts are shown to be both more active and more selective than conventional zeolite catalysts in the alkylation of benzene with ethene. The superior catalytic properties are ascribed to improved mass transport in the mesoporous zeolite crystals. Thus, mesoporous zeolite single-crystal catalysts combine the high acidity, shape-selectivity, and hydrothermal stability of zeolites with the efficient mass transport that is typically achieved in mesoporous materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...