Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 101(6): 1089-1098.e4, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30713029

ABSTRACT

Zika virus (ZIKV) targets neural progenitor cells in the brain, attenuates cell proliferation, and leads to cell death. Here, we describe a role for the ZIKV protease NS2B-NS3 heterodimer in mediating neurotoxicity through cleavage of a host protein required for neurogenesis. Similar to ZIKV infection, NS2B-NS3 expression led to cytokinesis defects and cell death in a protease activity-dependent fashion. Among binding partners, NS2B-NS3 cleaved Septin-2, a cytoskeletal factor involved in cytokinesis. Cleavage of Septin-2 occurred at residue 306 and forced expression of a non-cleavable Septin-2 restored cytokinesis, suggesting a direct mechanism of ZIKV-induced neural toxicity. VIDEO ABSTRACT.


Subject(s)
Apoptosis , Cytokinesis , Mitosis , Neural Stem Cells/metabolism , Septins/metabolism , Viral Nonstructural Proteins/metabolism , Zika Virus/metabolism , Cytoskeleton/metabolism , HEK293 Cells , HeLa Cells , Humans , Neurogenesis , RNA Helicases/metabolism , Serine Endopeptidases/metabolism
2.
Am J Hum Genet ; 103(2): 296-304, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30032983

ABSTRACT

The dynamic shape of the endoplasmic reticulum (ER) is a reflection of its wide variety of critical cell biological functions. Consequently, perturbation of ER-shaping proteins can cause a range of human phenotypes. Here, we describe three affected children (from two consanguineous families) who carry homozygous loss-of-function mutations in LNPK (previously known as KIAA1715); this gene encodes lunapark, which is proposed to serve as a curvature-stabilizing protein within tubular three-way junctions of the ER. All individuals presented with severe psychomotor delay, intellectual disability, hypotonia, epilepsy, and corpus callosum hypoplasia, and two of three showed mild cerebellar hypoplasia and atrophy. Consistent with a proposed role in neurodevelopmental disease, LNPK was expressed during brain development in humans and mice and was present in neurite-like processes in differentiating human neural progenitor cells. Affected cells showed the absence of full-length lunapark, aberrant ER structures, and increased luminal mass density. Together, our results implicate the ER junction stabilizer lunapark in establishing the corpus callosum.


Subject(s)
Endoplasmic Reticulum/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Adolescent , Animals , Atrophy/genetics , Cell Differentiation/genetics , Child , Corpus Callosum/pathology , Female , Humans , Infant , Intellectual Disability/genetics , Male , Membrane Proteins , Mice , Muscle Hypotonia/genetics , Phenotype , Psychomotor Disorders/genetics , Stem Cells/pathology
3.
J Med Genet ; 55(1): 48-54, 2018 01.
Article in English | MEDLINE | ID: mdl-28626029

ABSTRACT

BACKGROUND: Transport protein particle (TRAPP) is a multisubunit complex that regulates membrane trafficking through the Golgi apparatus. The clinical phenotype associated with mutations in various TRAPP subunits has allowed elucidation of their functions in specific tissues. The role of some subunits in human disease, however, has not been fully established, and their functions remain uncertain. OBJECTIVE: We aimed to expand the range of neurodevelopmental disorders associated with mutations in TRAPP subunits by exome sequencing of consanguineous families. METHODS: Linkage and homozygosity mapping and candidate gene analysis were used to identify homozygous mutations in families. Patient fibroblasts were used to study splicing defect and zebrafish to model the disease. RESULTS: We identified six individuals from three unrelated families with a founder homozygous splice mutation in TRAPPC6B, encoding a core subunit of the complex TRAPP I. Patients manifested a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features, and showed splicing defect. Zebrafish trappc6b morphants replicated the human phenotype, displaying decreased head size and neuronal hyperexcitability, leading to a lower seizure threshold. CONCLUSION: This study provides clinical and functional evidence of the role of TRAPPC6B in brain development and function.


Subject(s)
Autistic Disorder/genetics , Epilepsy/genetics , Founder Effect , Genetic Association Studies , Microcephaly/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Animals , Autistic Disorder/complications , Epilepsy/complications , Homozygote , Humans , Microcephaly/complications , Phenotype , Zebrafish
4.
Cell ; 167(6): 1481-1494.e18, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912058

ABSTRACT

Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function.


Subject(s)
Autism Spectrum Disorder/genetics , Blood-Brain Barrier/physiopathology , Large Neutral Amino Acid-Transporter 1/metabolism , Mutation , Amino Acids/administration & dosage , Amino Acids/metabolism , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Brain/pathology , Brain/physiopathology , Female , Humans , Infant , Infant, Newborn , Large Neutral Amino Acid-Transporter 1/genetics , Male , Mice , Mice, Knockout , Pedigree , Protein Biosynthesis , Receptor, TIE-2/genetics
5.
Am J Hum Genet ; 99(4): 912-916, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27616480

ABSTRACT

The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.


Subject(s)
Acyltransferases/genetics , Autistic Disorder/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Mutation , Acyltransferases/metabolism , Arachidonic Acid/metabolism , Autistic Disorder/complications , Autistic Disorder/enzymology , Autistic Disorder/metabolism , Child , Child, Preschool , Consanguinity , Epilepsy/complications , Epilepsy/enzymology , Epilepsy/metabolism , Female , Homozygote , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/enzymology , Intellectual Disability/metabolism , Lysophospholipids/metabolism , Male , Membrane Proteins/metabolism , Pedigree , Phosphatidylinositols/metabolism
6.
Science ; 343(6170): 506-511, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24482476

ABSTRACT

Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.


Subject(s)
Exome/genetics , Genetic Association Studies , Motor Neuron Disease/genetics , Neurons/metabolism , Pyramidal Tracts/metabolism , Spastic Paraplegia, Hereditary/genetics , Animals , Axons/physiology , Biological Transport/genetics , Cohort Studies , Gene Regulatory Networks , Humans , Mutation , Nucleotides/genetics , Nucleotides/metabolism , Sequence Analysis, DNA , Synapses/physiology , Transcriptome , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...