Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(20): 23640-54, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104276

ABSTRACT

High-Q guided resonance modes in two-dimensional photonic crystals, enable high field intensity in small volumes that can be exploited to realize high performance sensors. We show through simulations and experiments how the Q-factor of guided resonance modes varies with the size of the photonic crystal, and that this variation is due to loss caused by scattering of in-plane propagating modes at the lattice boundary and coupling of incident light to fully guided modes that exist in the homogeneous slab outside the lattice boundary. A photonic crystal with reflecting boundaries, realized by Bragg mirrors with a band gap for in-plane propagating modes, has been designed to suppress these edge effects. The new design represents a way around the fundamental limitation on Q-factors for guided resonances in finite photonic crystals. Results are presented for both simulated and fabricated structures.

2.
Opt Express ; 21(25): 31375-89, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514712

ABSTRACT

We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

3.
Opt Express ; 20(7): 7954-65, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453468

ABSTRACT

A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.


Subject(s)
Biosensing Techniques/instrumentation , Membranes, Artificial , Molecular Imaging/instrumentation , Molecular Probe Techniques/instrumentation , Nanoparticles/analysis , Optical Devices , Crystallization , Equipment Design , Equipment Failure Analysis , Photons
4.
J Oncol ; 2012: 905024, 2012.
Article in English | MEDLINE | ID: mdl-22235204

ABSTRACT

The paper presents the development of a "proof-of-principle" hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV) E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n = 28) from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%-85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a "sample-in, answer-out" diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection.

5.
Opt Express ; 18(16): 17201-8, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20721109

ABSTRACT

We report on simulations and measurements of focusing diffractive optical elements, fabricated as two-level binary optics. The diffractive optical elements are designed to separate and focus four specific wavelengths in the infrared. The simulations are based on a local linear grating model, and predict anomalies similar to Wood's anomalies known from grating diffraction theory. The anomalies are also seen in the measurements, and are excited at the DOE locations predicted by the simulations. The given examples illustrate the usefulness of the model for evaluation of DOE designs. We also present a comparison of the response and spectral uniformity between two different versions of the four-wavelength diffractive optical elements. In the first version, the optical functions for all the four wavelengths are incorporated into the same surface pattern, covering the whole patterned area. In the second version the pattern f each wavelength is kept separate, and cover one fourth of the area, forming a mosaic of the four individual patterns.


Subject(s)
Optics and Photonics , Spectrum Analysis/methods , Wood/analysis
6.
Opt Express ; 17(12): 10206-22, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506675

ABSTRACT

We present simulations and characterization of gold coated diffractive optical elements (DOEs) that have been designed and fabricated in silicon for an industrial application of near-infrared spectroscopy. The DOE design is focusing and reflecting, and two-level and four-level binary designs were studied. Our application requires the spectral response of the DOE to be uniform over the DOE surface. Thus the variation in the spectral response over the surface was measured, and studied in simulations. Measurements as well as simulations show that the uniformity of the spectral response is much better for the four-level design than for the two-level design. Finally, simulations and measurements show that the four-level design meets the requirements of spectral uniformity from the industrial application, whereas the simulations show that the physical properties of diffraction gratings in general make the simpler tw level design unsuitable.


Subject(s)
Lenses , Refractometry/instrumentation , Spectroscopy, Near-Infrared/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...