Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(4): 1524-1534, 2017 01 27.
Article in English | MEDLINE | ID: mdl-27986810

ABSTRACT

GPRC6A is a G protein-coupled receptor activated by l-amino acids, which, based on analyses of knock-out mice, has been suggested to have physiological functions in metabolism and testicular function. The human ortholog is, however, mostly retained intracellularly in contrast to the cell surface-expressed murine and goldfish orthologs. The latter orthologs are Gq-coupled and lead to intracellular accumulation of inositol phosphates and calcium release. In the present study we cloned the bonobo chimpanzee GPRC6A receptor, which is 99% identical to the human receptor, and show that it is cell surface-expressed and functional. By analyses of chimeric human/mouse and human/bonobo receptors, bonobo receptor mutants, and the single nucleotide polymorphism database at NCBI, we identify an insertion/deletion variation in the third intracellular loop responsible for the intracellular retention and lack of function of the human ortholog. Genetic analyses of the 1000 genome database and the Inter99 cohort of 6,000 Danes establish the distribution of genotypes among ethnic groups, showing that the cell surface-expressed and functional variant is much more prevalent in the African population than in European and Asian populations and that this variant is partly linked with a stop codon early in the receptor sequence (rs6907580, amino acid position 57). In conclusion, our data solve a more than decade-old question of why the cloned human GPRC6A receptor is not cell surface-expressed and functional and provide a genetic framework to study human phenotypic traits in large genome sequencing projects linked with physiological measurement and biomarkers.


Subject(s)
Gene Expression Regulation , INDEL Mutation , Receptors, G-Protein-Coupled , Animals , Cell Line , Humans , Mice , Protein Structure, Secondary , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics
2.
Amino Acids ; 44(2): 383-90, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22714012

ABSTRACT

GPRC6A is a seven-transmembrane receptor activated by a wide range of L-α-amino acids, most potently by L-arginine and other basic amino acids. The receptor is broadly expressed, but its exact physiological role remains to be elucidated. It is well established that L-arginine stimulates insulin secretion; therefore, the receptor has been hypothesized to have a role in regulating glucose metabolism. In this study, we demonstrate that GPRC6A is expressed in islets of Langerhans, but activation of the receptor by L-arginine did not stimulate insulin secretion. We also investigated central metabolic parameters in GPRC6A knockout mice compared with wildtype littermates and found no difference in glucose metabolism or body fat percentage when mice were administered a standard chow diet. In conclusion, our data do not support a role for GPRC6A in L-arginine-induced insulin release and glucose metabolism under normal physiological conditions.


Subject(s)
Arginine/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Glucose/metabolism , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
3.
Vitam Horm ; 84: 151-84, 2010.
Article in English | MEDLINE | ID: mdl-21094899

ABSTRACT

In recent years, several highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized of which many are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids (FFAs) and are expressed in taste tissue, the gastrointestinal (GI) tract, endocrine glands, adipose tissue, and/or kidney. This has led to the hypothesis that these receptors may act as sensors of food intake modulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. In the present review, we describe the molecular mechanisms of nutrient-sensing of the calcium-sensing receptor (CaR), the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3-sensing L-α-amino acids; the carbohydrate-sensing T1R2/T1R3 receptor; the proteolytic degradation product sensor GPR93 (also termed GPR92); and the FFA sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. Due to their omnipresent nature, the natural ligands have had limited usability in pharmacological/physiological studies which has hampered the elucidation of the physiological function and therapeutic prospect of their receptors. However, an increasing number of subtype-selective ligands and/or receptor knockout mice are being developed which at least for some of the receptors have validated them as promising drug targets in, for example, type II diabetes.


Subject(s)
Eating/physiology , Receptors, Calcium-Sensing/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Humans , Ligands , Mice , Models, Molecular
4.
Mol Pharmacol ; 76(3): 453-65, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19487246

ABSTRACT

A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.


Subject(s)
Amino Acids/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ligands , Mice , Rats
5.
J Mol Endocrinol ; 42(3): 215-23, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19103720

ABSTRACT

GPRC6A is a seven-transmembrane receptor mediating signaling by a wide range of L-alpha-amino acids, a signaling augmented by the divalent cations Ca(2)(+) and Mg(2)(+). GPRC6A transcripts are detected in numerous mammalian tissues, but the physiological role of the receptor is thus far elusive. Analogously to the closely related calcium-sensing receptor, GPRC6A has been proposed to function as a metabolic sensor of Ca(2)(+) and amino acids in bone and other tissues. In the present study, we have generated the first GPRC6A knockout mice and studied their phenotype with particular focus on bone homeostasis. The generated GPRC6A knockout mice are viable and fertile, develop normally, and exhibit no significant differences in body weight compared with wild-type littermates. Assessment of bone mineral density, histomorphometry, and bone metabolism demonstrated no significant differences between 13-week-old knockout and wild-type mice. In conclusion, our data do not support a role for GPRC6A in normal bone physiology.


Subject(s)
Bone and Bones/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Bone and Bones/anatomy & histology , Female , Genotype , Male , Mice , Mice, Knockout , Mutation , Phenotype , Receptors, G-Protein-Coupled/physiology , Reverse Transcriptase Polymerase Chain Reaction , Tibia/anatomy & histology , Tibia/metabolism
6.
J Cell Sci ; 121(Pt 6): 854-64, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18303054

ABSTRACT

Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects could be rescued by reintroduction of wild-type IKAP but not by FD-IKAP, a truncated form of IKAP constructed according to the mutation found in the majority of FD patients. Cytosolic IKAP co-purified with proteins involved in cell migration, including filamin A, which is also involved in neuronal migration. Immunostaining of IKAP and filamin A revealed a distinct co-localization of these two proteins in membrane ruffles. Depletion of IKAP resulted in a significant decrease in filamin A localization in membrane ruffles and defective actin cytoskeleton organization, which both could be rescued by the expression of wild-type IKAP but not by FD-IKAP. No downregulation in the protein levels of paxillin or beclin 1, which were recently described as specific transcriptional targets of IKAP, was detected. These results provide evidence for the role of the cytosolic interactions of IKAP in cell adhesion and migration, and support the notion that cell-motility deficiencies could contribute to FD.


Subject(s)
Carrier Proteins/physiology , Cell Movement , Cell Surface Extensions/chemistry , Contractile Proteins/analysis , Microfilament Proteins/analysis , Stress Fibers/ultrastructure , Animals , Carrier Proteins/analysis , Carrier Proteins/antagonists & inhibitors , Cell Adhesion , Cells, Cultured , Cerebellum/cytology , Cytosol/metabolism , Filamins , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mutation , Neurons/physiology , Paxillin/analysis , RNA Interference , RNA-Binding Proteins , Rats , Transcriptional Elongation Factors , Vinculin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...