Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(17): eadn3454, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657075

ABSTRACT

Conventional quantum-mechanical calculations of molecular properties, such as dipole moments and electronic excitation energies, give errors that depend linearly on the error in the wave function. An exception is the electronic energy, whose error depends quadratically on the error in wave function. We here describe how all properties may be calculated with a quadratic error, by setting up a variational Lagrangian for the property of interest. Because the construction of the Lagrangian is less expensive than the calculation of the wave function, this approach substantially improves the accuracy of quantum-chemical calculations without increasing cost. As illustrated for excitation energies, this approach enables the accurate calculation of molecular properties for larger systems, with a short time-to-solution and in a manner well suited for modern computer architectures.

2.
Phys Chem Chem Phys ; 23(22): 12889-12899, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34075905

ABSTRACT

We investigate the effects of nanoparticles on molecular solar thermal energy storage systems and how one can tune chemical reactivities of a molecular photo- and thermoswitch by changing the nanoparticles. We have selected the dihydroazulene/vinylheptafulvene system to illustrate the effects of the nanoparticles on the chemical reactivities of the molecular photo- and thermoswitch. We have utilized the following nanoparticles: a TiO2 nanoparticle along with nanoparticles of gold, silver and copper. We calculate the rate constants for the release of the thermal energy utilizing a QM/MM method coupled to a transition state method. The molecular systems are described by density functional theory whereas the nanoparticles are given by molecular mechanics including electrostatic and polarization dynamics. In order to investigate whether the significant stabilization of the transitions state provided by the nanoparticles is general to the DHA/VHF system, we calculated the transition state rate constant of the parent- and 3-amino-substituted-DHA/VHF systems at 298.15 K in the four different orientations and at the three different separations. We observe that the transition state rate constant of the parent system is only increased as the cyano groups are oriented towards the nanoparticle while the presence of the nanoparticle actually impedes the reactions using the three other orientations. On the other hand, for the substituted system the nanoparticle generally leads to a significant increase in the rate of the reaction. We find that the nanoparticles can have a substantial effect on the calculated rate constants. We observe, depending on the nanoparticle and the molecular orientation, increases of the rate constants by a factor of 106. This illustrates the prospects of utilizing nanoparticles for controlling the release of the stored thermal energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...