Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 32(4): 042003, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33155576

ABSTRACT

This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.

2.
Sci Adv ; 6(29): eabc0708, 2020 07.
Article in English | MEDLINE | ID: mdl-32832650

ABSTRACT

Mobile genetic elements, such as human endogenous retroviruses (HERVs), produce proteins that regulate brain cell functions and synaptic transmission and have been implicated in the etiology of neurological and neurodevelopmental psychiatric disorders. However, the mechanisms by which these proteins of retroviral origin alter brain cell communication remain poorly understood. Here, we combined single-molecule tracking, calcium imaging, and behavioral approaches to demonstrate that the envelope protein (Env) of HERV type W, which is normally silenced but expressed in patients with neuropsychiatric conditions, alters the N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic organization and plasticity through glia- and cytokine-dependent changes. Env expression in the developing hippocampus was sufficient to induce behavioral impairments at the adult stage that were prevented by Env neutralization or tuning of NMDAR trafficking. Thus, we show that a HERV gene product alters glutamate synapse maturation and generates behavioral deficits, further supporting the possible etiological interplay between genetic, immune, and synaptic factors in psychosis.


Subject(s)
Endogenous Retroviruses , Psychotic Disorders , Endogenous Retroviruses/genetics , Glutamic Acid/genetics , Humans , Psychotic Disorders/genetics , Synapses/metabolism , Viral Envelope Proteins/metabolism
3.
Trends Neurosci ; 41(8): 502-511, 2018 08.
Article in English | MEDLINE | ID: mdl-29807730

ABSTRACT

Recent years have seen a flourishing literature on detection of circulating autoantibodies against neurotransmitter receptors in patients with neuropsychiatric disorders. These studies have generated hope for a better understanding of the underlying molecular dysfunctions and for appropriate therapeutic strategies. However, the detection of these autoantibodies in healthy subjects, and the lack of mechanistic insights have fostered debate about the pathogenic role of such autoantibodies. Here, we specifically discuss the biological evidence linking autoantibodies directed against the glutamatergic N-methyl-d-aspartate (NMDA) receptor (NMDAR-Abs) and psychosis, emphasising recent single-molecule imaging investigations that unveiled the impaired surface trafficking of NMDAR in the presence of NMDAR-Abs from psychotic patients. Although still in its infancy, the hypothesis that NMDAR-Abs from patients with psychosis play a pathogenic role is thus gaining support, opening avenues of fundamental and translational investigations.


Subject(s)
Autoantibodies/metabolism , Psychotic Disorders/immunology , Receptors, N-Methyl-D-Aspartate/immunology , Animals , Humans , Schizophrenia/immunology
4.
J Nanosci Nanotechnol ; 11(4): 3493-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21776729

ABSTRACT

The synthesis of spherical copper nanoparticles with extremely narrow size distribution by electroless copper deposition on mesoporous silica support is described. The materials were characterized by nitrogen sorption, transmission electron microscopy, x-ray diffractometry and Fourier transform infrared spectroscopy. The copper nanoparticles have a cubic crystalline structure and an average particle size of 5.5 +/- 0.8 nm. The copper nanoparticles are stable, without detectable oxidation or further agglomeration under ambient conditions even after months. These results demonstrate that electroless copper reduction can be conducted and constrained within the mesoporous silica framework, which pave the way for engineered mesoreactors.


Subject(s)
Copper/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon Dioxide/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
5.
J Chem Phys ; 128(18): 184709, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18532838

ABSTRACT

The molecular and electronic surface structure of a triarylamine based hole-conductor (HC) molecule evaporated onto rutile TiO2(110) single crystal is investigated by means of synchrotron light based photoelectron spectroscopy and x-ray absorption spectroscopy in combination with calculations based on density functional theory. Different amounts of the HC molecule was evaporated spanning the monolayer to multilayer region. The molecular surface structure is investigated and the results indicate that no specific covalent chemical bonding is formed and that the plane formed by the different nitrogens in the HC molecules has a rather small angle versus the TiO2 substrate surface plane. Some molecular ordering also persists in the multilayer region. The experimental core level spectra, valence level spectra, and the N 1s x-ray absorption spectroscopy spectra are well modeled by calculations on an individual molecule. Interestingly, the formation of the TiO2HC interface results in significant binding energy shifts in core levels and valence levels shifting all peaks of a the HC material to the same extent. Smaller shifts were also observed in the substrate core level peaks. The shift is discussed in terms of nanoscale energy level bending and final state hole screening. With respect to electronic applications, specifically in a solid state dye-sensitized solar cell, it is argued that the observed energy level alignment at the TiO2HC interface can act as a hole trap.

6.
J Chem Phys ; 126(24): 244303, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17614545

ABSTRACT

The frontier electronic structures of Ru(tcterpy)(NCS)3 [black dye (BD)] and Ru(dcbpy)2(NCS)(2) (N719) have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS) and resonant photoelectron spectroscopy (RPES). N1s XAS has been used to probe the nitrogen contribution in the unoccupied density of states, and PES, together with RPES over the N1s edge, has been used to delineate the character of the occupied density of states. The experimental findings of the frontier electron structure are compared to calculations of the partial density of states for the nitrogens in the different ligands (NCS and terpyridine/bipyridine) and for Ru4d. The result indicates large similarities between the two complexes. Specifically, the valence level spectra show two well separated structures at low binding energy. The experimental results indicate that the outermost structure in the valence region largely has a Ru4d character but with a substantial character also from the NCS ligand. Interestingly, the second lowest structure also has a significant Ru4d character mixed into the structure otherwise dominated by NCS. Comparing the two complexes the BD valence structures lowest in binding energy contains a large contribution from the NCS ligands but almost no contribution from the terpyridine ligands, while for N719 also some contribution from the bipyridine ligands is mixed into the energy levels.

7.
J Phys Chem B ; 109(47): 22256-63, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16853898

ABSTRACT

The element specificity of photoelectron spectroscopy (PES) has been used to compare the electronic and molecular structure of the dyes Ru(tcterpy)(NCS)3 (BD) and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2. Ru(dcbpy)2(NCS)2 was investigated in its acid (N3) and in its 2-fold deprotonated form (N719) having tetrabutylammonium (TBA+) as counterions. A comparison of the O1s spectra for the dyes indicates that the interactions through the carboxylate groups with the TiO2 surface are very similar for the dyes. However, we observe that some of the dye molecules also interact through the NCS groups when adsorbed at the TiO2 surface. Comparing the N719 and the N3 molecule, the fraction of NCS groups interacting through the sulfur atoms is smaller for N719 than for N3. We also note that the counterion TBA+ is coadsorbed with the N719 and BD molecules although the amount was smaller than expected from the molecular formulas. Comparing the valence levels for the dyes adsorbed on TiO2, the position of the highest occupied electronic energy level is similar for N3 and N719, while that for BD is lower by 0.25 eV relative to that of the other complexes.


Subject(s)
Nanostructures/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Titanium/chemistry , Adsorption , Electrons , Molecular Structure , Photochemistry , Sensitivity and Specificity , Solutions/chemistry , Spectrum Analysis/methods , Surface Properties
8.
J Chem Phys ; 120(23): 11224-32, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15268152

ABSTRACT

The interfaces of the nanostructured dye-sensitized solid heterojunction TiO(2)/Ru-dye/CuI have been studied using photoelectron spectroscopy of core and valence levels, x-ray absorption spectroscopy and atomic force microscopy. A nanostructured anatase TiO(2) film sensitized with RuL(2)(NCS)(2) [cis-bis(4,4(')-dicarboxy-2,2(')-bipyridine)-bis(isothio-cyanato)-ruthenium(II)] was prepared in a controlled way using a novel combined in-situ and ex-situ (Ar atmosphere) method. Onto this film CuI was deposited in-situ. The formation of the dye-CuI interface and the changes brought upon the dye-TiO(2) interface could be monitored in a stepwise fashion. A direct interaction between the dye NCS groups and the CuI is evident in the core level photoelectron spectra. Concerning the energy matching of the valence electronic levels, the photoelectron spectra indicate that the dye HOMO overlaps in energy with the Cu 3d-I 5p hydrid states. The CuI grow in the form of particles, which at the initial stages displace the dye molecules causing dye-TiO(2) bond breaking. Consequently, the very efficient charge injection channel provided by the dye-TiO(2) carboxylic bonding is directly affected for a substantial part of the dye molecules. This may be of importance for the functional properties of such a heterojunction.

9.
Nat Biotechnol ; 18(12): 1262-8, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11101804

ABSTRACT

We have developed a high-resolution "genome array" for the study of gene expression and regulation in Escherichia coli. This array contains on average one 25-mer oligonucleotide probe per 30 base pairs over the entire genome, with one every 6 bases for the intergenic regions and every 60 bases for the 4,290 open reading frames (ORFs). Twofold concentration differences can be detected at levels as low as 0.2 messenger RNA (mRNA) copies per cell, and differences can be seen over a dynamic range of three orders of magnitude. In rich medium we detected transcripts for 97% and 87% of the ORFs in stationary and log phases, respectively. We found that 1, 529 transcripts were differentially expressed under these conditions. As expected, genes involved in translation were expressed at higher levels in log phase, whereas many genes known to be involved in the starvation response were expressed at higher levels in stationary phase. Many previously unrecognized growth phase-regulated genes were identified, such as a putative receptor (b0836) and a 30S ribosomal protein subunit (S22), both of which are highly upregulated in stationary phase. Transcription of between 3,000 and 4,000 predicted ORFs was observed from the antisense strand, indicating that most of the genome is transcribed at a detectable level. Examples are also presented for high-resolution array analysis of transcript start and stop sites and RNA secondary structure.


Subject(s)
Escherichia coli/genetics , Gene Expression Profiling/methods , Genome, Bacterial , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Open Reading Frames/genetics , RNA, Antisense/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , Transcription, Genetic
10.
Appl Opt ; 31(29): 6307-21, 1992 Oct 10.
Article in English | MEDLINE | ID: mdl-20733846

ABSTRACT

Results are presented from a series of experiments in which the U.S. Air Force Maui Optical Station's 1.6-m telescope and a bare CCD speckle camera system were used to image satellites at distances of up to 1000 km. A brief overview of the image reconstruction algorithms is presented. The choice of the experiment site and various imaging parameters are described. Power spectra and power spectral signal-to-noise ratio curves that result from imaging several point stars are compared with theory. Reconstructed images of several binary stars are shown as a base-line assessment of our technique. High-quality image reconstructions of an Earth-satellite, the Hubble Space Telescope, are presented. The results confirm that speckle imaging techniques can be used with a bare CCD imaging system to provide a powerful and flexible method for imaging objects of moderate magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...