Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 406: 124501, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33321315

ABSTRACT

Many piesce of research have been performed to detect nitroaromatic-compounds (NACs) by metal-organic frameworks (MOFs). Despite extensive studies, there are still significant challenges like selective detection of specific NAC group in presence of other NACs. Here, we have integrated two functionalization strategies through decoration of pore-walls of the MOFs with trifluoromethyl groups and extension in π-conjugated system. Based on this idea, trifluoromethyl TMU-44 (with the formula [Zn2(hfipbb)2(L1)]n.DMF, H2hfipbb = 4,4'-(hexafluoroisopropylidene) bis(benzoic acid), L1 = N,N'-bis-pyridin-4-ylmethylene-benzene-1,4-diamine) and TMU-45 (with formula [Zn2(hfipbb)2(L2)]n.DMF, L2 = N,N'-bis-pyridin-4-ylmethylene-naphthalene-1,5-diamine) frameworks have been synthesized. The aromatic skeleton of TMU-44 is based on phenyl rings while TMU-45 aromatic skeleton is extended by replacement of phenyl with naphthyl core. Measurements reveal that these MOFs are highly sensitive to phenolic NACs especially 2,4,6-trinitrophenol (TNP) with high quenching efficiency of 90% for TMU-44 (KSV = 10,652 M-1, LOD = 6.9 ppm) and 99% for TMU-45 (KSV = 34,741 M-1, LOD = 2.07 ppm). The proposed detection mechanism can be associated with hydrogen bonding between OH group of phenolic NACs and trifluoromethyl groups of TMU-MOFs as well as π(rich)∙∙∙π(deficient) interaction between π-conjugated backbone of TMU-frameworks and π-deficient ring of NACs.

2.
Ultrason Sonochem ; 39: 897-907, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28733021

ABSTRACT

A new Co(II) mixed-ligand coordination supramolecular polymer with composition [Co2(ppda)(4-bpdh)2(NO3)2]n (1) (where, ppda=p-phenylenediacrylic acid, 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) was synthesized using solvothermal, mechanochemical and sonochemical methods. Compound 1 and the new nanostructure have been characterized by single-crystal X-ray, infrared spectroscopy (IR), powder X-ray diffraction (PXRD) analysis and scanning electron microscopy (SEM). The thermal stability of compound 1 was also studied by thermal gravimetric analysis (TGA). The surface area of these compounds was determined by BET. The single-crystal X-ray data shows a new interesting two-dimensional coordination polymer (CP). In addition, the effect of various sonication concentrations of initial reagents, power of ultrasound irradiation and also the time on the size and morphology of nano-structured coordination polymer 1 were evaluated. Moreover, it has been demonstrated that the nanostructure of the CP1 can be used as a catalyst in Knoevenagel condensation reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...