Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535190

ABSTRACT

Sweet chestnut, an Asiatic tree introduced in many parts of Europe including the United Kingdom, is planted for nut production, timber, and amenity. Its major threat is the disease called blight, caused by the fungus Cryphonectria parasitica, which infects through wounds by airborne spores. Field trapping using sticky rods rotating traps was performed in an infected area in Devon (between May 2021 and April 2023). An improved dual hydrolysis Taqman probes real-time PCR was used. The number of spores was calculated by comparing the cycle threshold to the Ct of standards with known amounts of conidia or known target fragment copies cloned into a plasmid. Weekly spore counts were in the range of around 60 to approximately 8.5 × 103, with fluctuations of peaks (mainly in late summer-autumn 2021) and troughs. The effects of weather parameters were modelled, finding correlations between spore numbers and temperature, humidity, dewpoint, rainfall, wind speed, and wind duration. Additionally, an insect trapping was performed to confirm the presence/absence and quantity of C. parasitica conidia potentially phoretic on some insects by using the same molecular approach. None of the ten collected insect species harboured spores of this fungus.

3.
Exp Physiol ; 105(3): 427-437, 2020 03.
Article in English | MEDLINE | ID: mdl-31758871

ABSTRACT

NEW FINDINGS: What is the topic of this review? The [Ca2+ ]/[Mg2+ ] in buffers are usually calculated using one of eight programs. These all give different values, thus [Ca2+ ]/[Mg2+ ] must be measured. What advances does it highlight? The ligand optimization method (LOM) using electrodes is an accurate method to do this. The limitations of the method are described. The LOM has been generalized to include calibration of fluorochromes and aequorin. It is the method of choice to measure intracellular equilibrium constants. Owing to the uncertainties for the values of resting [Ca2+ ], ∆[Ca2+ ] and the pK' values for intracellular Ca2+ /Mg2+ binding used in modelling, these values must now be re-examined critically. ABSTRACT: Modelling intracellular regulation of Ca2+ /Mg2+ is now an established part of physiology. However, the conclusions drawn from such studies depend on accurate knowledge of intracellular [Ca2+ ], ∆[Ca2+ ] and the pK' values for the intracellular binding of Ca2+ /Mg2+ . Calculation of [Ca2+ ]/[Mg2+ ] in buffers is normal. The eight freely available programs all give different values for the [Ca2+ ]/[Mg2+ ] in the buffer solutions, varying by up to a factor of 4.3. As a result, concentrations must be measured. There are two methods to do this, both based on the ligand optimization method (LOM): (1) calibration solutions from 0.5 to 4 mmol l-1 ; and (2) calibration solutions from 0.1 µmol l-1 to 2 mmol l-1 . Both methods can be used to calibrate Ca2+ /Mg2+ electrodes. Only Method 2 can be used directly to calibrate fluorochromes and aequorin. Software in the statistical program R to calculate the [Ca2+ ]/[Mg2+ ] in buffers is provided for both methods. The LOM has now been generalized for use with electrodes, fluorochromes and aequorin, making it the ideal method to determine the pK' values for intracellular binding of Ca2+ /Mg2+ . The [Ca2+ ]/[Mg2+ ] in buffers must be measured routinely, which is best done by calibrating electrodes with the LOM and software written in R. If [Ca2+ ]/[Mg2+ ] in buffers are calculated, the parameters used in modelling show the same degree of variability as the software programs. Uncritical acceptance of such parameters means that conclusions reached from such studies are relative, not absolute, and must now be re-examined.


Subject(s)
Calcium/chemistry , Magnesium/chemistry , Buffers , Calibration , Electrodes , Ligands
4.
Prog Biophys Mol Biol ; 126: 48-64, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28450155

ABSTRACT

In Ca2+ and Mg2+ buffer solutions the ionised concentrations ([X2+]) are either calculated or measured. Calculated values vary by up to a factor of seven due to the following four problems: The calculated [X2+] in buffers are so inconsistent that calculation is not an option. Until standards are available, the [X2+] in the buffers must be measured. The Ligand Optimisation Method is an accurate and independently verified method of doing this (McGuigan & Stumpff, Anal. Biochem. 436, 29, 2013). Lack of standards means it is not possible to compare the published [Ca2+] in the nmolar range, and the apparent constant (K/) values for Ca2+ and Mg2+ binding to intracellular ligands amongst different laboratories. Standardisation of Ca2+/Mg2+ buffers is now essential. The parameters to achieve this are proposed.

5.
Prog Biophys Mol Biol ; 121(3): 195-211, 2016 09.
Article in English | MEDLINE | ID: mdl-26975789

ABSTRACT

In Ca(2+) and Mg(2+) buffer solutions the ionised concentrations ([X(2+)]) are either calculated or measured. Calculated values vary by up to a factor of seven due to the following four problems: 1) There is no agreement amongst the tabulated constants in the literature. These constants have usually to be corrected for ionic strength and temperature. 2) The ionic strength correction entails the calculation of the single ion activity coefficient, which involves non-thermodynamic assumptions; the data for temperature correction is not always available. 3) Measured pH is in terms of activity i.e. pHa. pHa measurements are complicated by the change in the liquid junction potentials at the reference electrode making an accurate conversion from H(+) activity to H(+) concentration uncertain. 4) Ligands such as EGTA bind water and are not 100% pure. Ligand purity has to be measured, even when the [X(2+)] are calculated. The calculated [X(2+)] in buffers are so inconsistent that calculation is not an option. Until standards are available, the [X(2+)] in the buffers must be measured. The Ligand Optimisation Method is an accurate and independently verified method of doing this (McGuigan & Stumpff, Anal. Biochem. 436, 29, 2013). Lack of standards means it is not possible to compare the published [Ca(2+)] in the nmolar range, and the apparent constant (K(/)) values for Ca(2+) and Mg(2+) binding to intracellular ligands amongst different laboratories. Standardisation of Ca(2+)/Mg(2+) buffers is now essential. The parameters to achieve this are proposed.


Subject(s)
Biophysics/methods , Biophysics/standards , Calcium/chemistry , Magnesium/chemistry , Buffers , Calcium/metabolism , Hydrogen-Ion Concentration , Magnesium/metabolism , Reference Standards
6.
Dalton Trans ; 45(24): 9786-93, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-26905754

ABSTRACT

As a starting point for evaluating a broader range of conditions for H2 oxidation complexes, in this work we investigate an efficient and reversible Ni-based H2 oxidation and production complex with an arginine in the outer coordination sphere, [Ni(P(Cy)2N(Arginine)2)2](7+) (CyArg). We tested this complex under a wide range of pressures and temperatures, in two different solvents (methanol and water), to determine if simultaneous improvements in rate and overpotential could be achieved. We found that the optimal conditions combined both high temperature (72 °C) and pressure (100 atm H2) in acidic aqueous solution (pH = 1), resulting in the fastest H2 oxidation reported for any homogeneous electrocatalyst to date (TOF 1.1 × 10(6) s(-1)) operating at 240 mV overpotential. The activation free energy in water was determined to be 10 kcal mol(-1) at all pressures studied. Surprisingly, in methanol under the same temperature and pressure, CyArg had a TOF for H2 oxidation of only 280 s(-1) at an overpotential of 750 mV. Comparisons to the data in water, and to a control complex, [Ni(P(Cy)2N(Benzyl)2)2](2+) (CyBn; Bn = benzyl), suggest that this substantial difference is likely due to a change in rate limiting step from H2 addition to deprotonation. Importantly, the optimal conditions we identified for CyArg (elevated temperature and acidic aqueous solutions), are amenable to fuel cell technologies and provide an important advancement in implementing homogeneous synthetic catalysts for renewable energy.

7.
Inorg Chem ; 54(24): 11883-8, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26640971

ABSTRACT

A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O2 + 4e(-) + 4H(+) ⇋ 2H2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc(+/0)) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol(-1) for MeCN and -1.47 kcal mol(-1) for DMF, and the potential of the H(+)/H2 couple, - 0.028 V in MeCN and -0.662 V in DMF. The H(+)/H2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O2/H2O couple has been extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 and +0.15 V in MeCN and -0.73 and -0.48 V in DMF, respectively. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol(-1) for acetonitrile and +0.6 kcal mol(-1) for DMF.

8.
Solid State Nucl Magn Reson ; 71: 41-54, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26527300

ABSTRACT

In NQR detection applications signal averaging by the summation of rapidly regenerated signals from multiple pulse sequences of the pulsed spin-locking (PSL) type is often used to improve sensitivity. It is important to characterise and if possible minimise PSL sequence off-resonance effects since they can make it difficult to optimise detection performance. We illustrate this with measurements of the variation of the decay time T2e and the amplitude of PSL signal trains with pulse spacing and excitation offset frequency for the 870 kHz ν+(14)N NQR line of monoclinic TNT under carefully stabilised temperature conditions. We have also carried out a similar study of signals from monoclinic TNT and 1H-1,2,3-triazole generated by a three-pulse echo sequence and the results are shown to agree well with a theoretical treatment appropriate to polycrystalline NQR samples such as TNT for which spin I=1, asymmetry parameter η≠0 and T1≫T2. Based on this theory we derive simple models for calculating TNT PSL signal trains and hence the pulse spacing and off-resonance dependence of signal amplitude and T2e which we compare to our experimental data. We discuss the influence of PSL echo summation on off-resonance effects in detected signal intensity and show how a phase-alternated multiple pulse sequence can be used in combination with the PSL sequence to eliminate variation in detection performance due to off-resonance effects.

9.
Solid State Nucl Magn Reson ; 71: 61-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26440130

ABSTRACT

Multiple pulse sequences are widely used for signal enhancement in NQR detection applications. Since the various (14)N NQR relaxation times, signal decay times and frequency of each NQR line have a major influence on detection sequence performance, it is important to characterise these parameters and their temperature variation, as fully as possible. In this paper we discuss such measurements for a number of the ν+ and ν- NQR lines of monoclinic and orthorhombic TNT and relate the temperature variation results to molecular dynamics. The temperature variation of the (14)N spin-lattice relaxation times T1 is interpreted as due to hindered rotation of the NO2 group about the C-NO2 bond with an activation energy of 89 kJ mol(-1) for the ortho and para groups of monoclinic TNT and 70 kJ mol(-1) for the para group of orthorhombic TNT.

11.
Dalton Trans ; 44(27): 12225-33, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-25811536

ABSTRACT

Covalent tethering of P(Ph)2N(C6H4C≡CH)2 ligands (P(Ph)2N(C6H4C≡CH)2 = 1,5-di-(4-ethynylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) to planar, azide-terminated glassy carbon electrode surfaces has been accomplished using a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) coupling reaction, using a BH3←P protection-deprotection strategy. Deprotected, surface-confined ligands were metallated using [Ni(II)(MeCN)6](BF4)2. X-ray photoelectron spectroscopic measurements demonstrate that metallation introduced 1.3 equivalents Ni(II) per diphosphine onto the electrode surface. Exposure of the surface to a second diphosphine ligand, P(Ph)2N(Ph)2, resulted in the removal of Ni from the surface. Protection, coupling, deprotection, and metallation conditions were optimized using solution-phase model systems, with benzyl azide as a model for the azide-terminated carbon surface; these reactions generate a [Ni(II)(diphosphine)2](2+) complex.

12.
Chem Commun (Camb) ; 51(28): 6172-4, 2015 Apr 11.
Article in English | MEDLINE | ID: mdl-25753760

ABSTRACT

Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s(-1). These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells.

13.
Proc Natl Acad Sci U S A ; 111(46): 16286-91, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368196

ABSTRACT

Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site have led to the synthesis of amino acid derivatives of [Ni(P2(R)N2(R'))2](2+) complexes, [Ni(P2(Cy)N2(Amino acid))2](2+) (CyAA). It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation at rates approaching those of hydrogenase enzymes. The reversibility is achieved in acidic aqueous solutions (pH = 0-6), 1 atm 25% H2/Ar, and elevated temperatures (tested from 298 to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the catalytic activity is dependent upon H2 and proton concentrations. CyArg is significantly faster in both directions (∼300 s(-1) H2 production and 20 s(-1) H2 oxidation; pH = 1, 348 K, 1 atm 25% H2/Ar) than the other two derivatives. The slower turnover frequencies for CyArgOMe (35 s(-1) production and 7 s(-1) oxidation under the same conditions) compared with CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s(-1) production and 4 s(-1) oxidation) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that outer coordination sphere amino acids work in synergy with the active site and can play an important role for synthetic molecular electrocatalysts, as has been observed for the protein scaffold of redox active enzymes.


Subject(s)
Arginine/analogs & derivatives , Arginine/chemistry , Coordination Complexes/chemistry , Hydrogen/chemistry , Nickel/chemistry , Catalysis , Electrochemical Techniques , Glycine/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Pressure
14.
Inorg Chem ; 53(13): 6875-85, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24971843

ABSTRACT

A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated planar glassy carbon electrode surface. Coupling proceeds with both the Ni(0) and the Ni(II) complexes. X-ray photoemission spectra show excellent agreement between the Ni(0) coupling product and its parent complex, and voltammetry of the surface-confined system shows that a single species predominates with a surface density of 1.3 × 10(-10) mol cm(-2), approaching the value estimated for a densely packed monolayer. With the Ni(II) system, both photoemission and voltammetric data show speciation to unidentified products on coupling, and the surface density is 6.7 × 10(-11) mol cm(-2). The surface-confined Ni(0) complex is an electroctalyst for hydrogen evolution, showing the onset of catalytic current at the same potential as the soluble parent complex. Decomposition of the surface-confined species is observed in acidic acetonitrile. This is interpreted to reflect the lability of the Ni(II)-phosphine interaction and the basicity of the free phosphine and bears on concurrent efforts to implement surface-confined Ni(P2N2)2 complexes in electrochemical or photoelectrochemical devices.

15.
Compr Physiol ; 4(3): 1229-72, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24944036

ABSTRACT

In saturation diving, divers stay under pressure until most of their tissues are saturated with breathing gas. Divers spend a long time in isolation exposed to increased partial pressure of oxygen, potentially toxic gases, bacteria, and bubble formation during decompression combined with shift work and long periods of relative inactivity. Hyperoxia may lead to the production of reactive oxygen species (ROS) that interact with cell structures, causing damage to proteins, lipids, and nucleic acid. Vascular gas-bubble formation and hyperoxia may lead to dysfunction of the endothelium. The antioxidant status of the diver is an important mechanism in the protection against injury and is influenced both by diet and genetic factors. The factors mentioned above may lead to production of heat shock proteins (HSP) that also may have a negative effect on endothelial function. On the other hand, there is a great deal of evidence that HSPs may also have a "conditioning" effect, thus protecting against injury. As people age, their ability to produce antioxidants decreases. We do not currently know the capacity for antioxidant defense, but it is reasonable to assume that it has a limit. Many studies have linked ROS to disease states such as cancer, insulin resistance, diabetes mellitus, cardiovascular diseases, and atherosclerosis as well as to old age. However, ROS are also involved in a number of protective mechanisms, for instance immune defense, antibacterial action, vascular tone, and signal transduction. Low-grade oxidative stress can increase antioxidant production. While under pressure, divers change depth frequently. After such changes and at the end of the dive, divers must follow procedures to decompress safely. Decompression sickness (DCS) used to be one of the major causes of injury in saturation diving. Improved decompression procedures have significantly reduced the number of reported incidents; however, data indicate considerable underreporting of injuries. Furthermore, divers who are required to return to the surface quickly are under higher risk of serious injury as no adequate decompression procedures for such situations are available. Decompression also leads to the production of endothelial microparticles that may reduce endothelial function. As good endothelial function is a documented indicator of health that can be influenced by regular exercise, regular physical exercise is recommended for saturation divers. Nowadays, saturation diving is a reasonably safe and well controlled method for working under water. Until now, no long-term impact on health due to diving has been documented. However, we still have limited knowledge about the pathophysiologic mechanisms involved. In particular we know little about the effect of long exposure to hyperoxia and microparticles on the endothelium.


Subject(s)
Diving/physiology , Animals , Environmental Pollutants/toxicity , Humans , Hyperoxia/physiopathology , Occupational Exposure/adverse effects , Welding
16.
Angew Chem Int Ed Engl ; 53(25): 6487-91, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24820824

ABSTRACT

Hydrogenase enzymes use Ni and Fe to oxidize H2 at high turnover frequencies (TOF) (up to 10,000 s(-1)) and low overpotentials (<100 mV). In comparison, the fastest reported synthetic electrocatalyst, [Ni(II)(P(Cy)2N(tBu)2)2](2+), oxidizes H2 at 60 s(-1) in MeCN under 1 atm H2 with an unoptimized overpotential of ca. 500 mV using triethylamine as a base. Here we show that a structured outer coordination sphere in a Ni electrocatalyst enhances H2 oxidation activity: [Ni(II)(P(Cy)2N(Arg)2)2](8+) (Arg=arginine) has a TOF of 210 s(-1) in water with high energy efficiency (180 mV overpotential) under 1 atm H2 , and 144,000 s(-1) (460 mV overpotential) under 133 atm H2. The complex is active from pH 0-14 and is faster at low pH, the most relevant condition for fuel cells. The arginine substituents increase TOF and may engage in an intramolecular guanidinium interaction that assists in H2 activation, while the COOH groups facilitate rapid proton movement. These results emphasize the critical role of features beyond the active site in achieving fast, efficient catalysis.


Subject(s)
Arginine/chemistry , Hydrogen/chemistry , Catalysis , Coordination Complexes/chemistry , Ligands , Molecular Structure , Nickel/chemistry , Oxidation-Reduction
17.
Prog Biophys Mol Biol ; 116(2-3): 203-11, 2014.
Article in English | MEDLINE | ID: mdl-24836054

ABSTRACT

In Ca(2+)/Mg(2+) buffers the calculated ionised concentrations ([X(2+)]) can vary by up to a factor of seven. Since there are no defined standards it is impossible to check calculated [X(2+)], making measurement essential. The ligand optimisation method (LOM) is an accurate method to measure [X(2+)] in Ca(2+)/Mg(2+) buffers; independent estimation of ligand purity extends the method to pK(/) < 4. To simplify calculation, Excel programs ALE and AEC were compiled for LOM and its extension. This paper demonstrates that the slope of the electrode in the pX range 2.000-3.301 deviates from Nernstian behaviour as it depends on the value of the lumped interference, Σ. ALE was modified to include this effect; this modified program SALE, and the programs ALE and AEC were used on simulated data for Ca(2+)-EGTA and Mg(2+)-ATP buffers, to calculate electrode and buffer characteristics as a function of Σ. Ca(2+)-electrodes have a Σ < 10(-6) mol/l and there was no difference amongst the three methods. The Σ for Mg(2+)-electrodes lies between 10(-5) and 1.5 (∗) 10(-5) mol/l and calculated [Mg(2+)] with ALE were around 3% less than the true value. SALE and AEC correctly predicted [Mg(2+)]. SALE was used to recalculate K(/) and pK(/) on measured data for Ca(2+)-EGTA and Mg(2+)-EDTA buffers. These results demonstrated that it is pK(/) that is normally distributed. Until defined standards are available, [X(2+)] in Ca(2+)/Mg(2+) buffers have to be measured. The most appropriate method is to use Ca(2+)/Mg(2) electrodes combined with the Excel programs SALE or AEC.


Subject(s)
Calcium/chemistry , Chemical Phenomena , Magnesium/chemistry , Buffers , Edetic Acid/chemistry , Egtazic Acid/chemistry , Hydrogen-Ion Concentration , Ligands , Solutions
18.
Anal Biochem ; 459: 46-52, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24835426

ABSTRACT

Many organic anions bind free Ca(2+), the total concentration of which must be adjusted in experimental solutions. Because published values for the apparent dissociation constant (Kapp) describing the Ca(2+) affinity of short chain fatty acids (SCFAs) and gluconate are highly variable, Ca(2+) electrodes coupled to either a 3M KCl or a Na(+) selective electrode were used to redetermine Kapp. All solutions contained 130mM Na(+), whereas the concentration of the studied anion was varied from 15 to 120mM, replacing Cl(-) that was decreased concomitantly to maintain osmolarity. This induces changes in the liquid junction potential (LJP) at the 3M KCl reference electrode, leading to a systematic underestimation of Kapp if left uncorrected. Because the Na(+) concentration in all solutions was constant, a Na(+) electrode was used to directly measure the changes in the LJP at the 3 M KCl reference, which were under 5mV but twice those predicted by the Henderson equation. Determination of Kapp either after correction for these LJP changes or via direct reference to a Na(+) electrode showed that SCFAs do not bind Ca(2+) and that the Kapp for the binding of Ca(2+) to gluconate at pH 7.4, ionic strength 0.15M, and 23°C was 52.7mM.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/standards , Calcium/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Gluconates/metabolism , Calibration , Electrodes , Osmolar Concentration , Reference Standards
19.
Chemistry ; 20(6): 1510-4, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24443316

ABSTRACT

Catalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni(P(Ph)2N(Ph))2](2+) (P(Ph)2N(Ph)=1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its ß-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (≈100,000 s(-1)) is enhanced compared to the parent complex ([Ni(P(Ph)2N(APPA))2](2+); ≈50,500 s(-1)). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.


Subject(s)
Coordination Complexes/chemistry , Nickel/chemistry , Peptides/chemistry , Catalysis , Electrochemical Techniques , Hydrogen/chemistry , Hydrogenase/chemistry , Models, Molecular
20.
Chem Commun (Camb) ; 50(7): 792-5, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24292336

ABSTRACT

We report the incorporation of a simple enzyme-inspired proton channel onto a hydrogen oxidation catalyst. This modification facilitates proton transfer and lowers the overpotential for oxidation of H2 by 300 mV when using water as a base.

SELECTION OF CITATIONS
SEARCH DETAIL
...