Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38937970

ABSTRACT

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.

2.
N Biotechnol ; 83: 36-45, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925526

ABSTRACT

Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced neurotoxicity, measured by behavioral assays, are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.

3.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585880

ABSTRACT

Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced behavioral anomalies are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.

4.
Sensors (Basel) ; 23(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765961

ABSTRACT

Chronic exposure to low concentrations of volatile organic compounds (VOCs), such as chlorobenzene, is not being monitored in industrializing countries, although VOC exposure is associated with carcinogenic, organ-toxic, and endocrine-disrupting effects. Current VOC-sensing technologies are inaccessible due to high cost, size, and maintenance or are ineffective due to poor sensitivity or reliability. In particular, marginalized individuals face barriers to traditional prescription VOC treatments due to cost, lack of transportation, and limited access to physicians; thus, alternative treatments are needed. Here, we created a novel cumulative wearable color-changing VOC sensor with a paper-based polydiacetylene sensor array for chlorobenzene. With a single smartphone picture, the sensor displays 14 days of logged chlorobenzene exposure data, interpreted by machine-learning (ML) techniques, including principal component analysis. Further, we explored the efficacy of affordable and accessible treatment options to mitigate a VOC's toxic effects. Vitamin D and sulforaphane are naturally found in cruciferous vegetables, like broccoli, and can be used to treat chlorobenzene-mediated bone degradation. Our platform combines these components into a smartphone app that photographs the sensor's colorimetric data, analyzes the data via ML techniques, and offers accessible treatments based on exposure data.


Subject(s)
Volatile Organic Compounds , Wearable Electronic Devices , Humans , Reproducibility of Results , Chlorobenzenes
5.
Mol Ther Nucleic Acids ; 29: 296-311, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35950212

ABSTRACT

Osteoporosis occurs due to a dysregulation in bone remodeling, a process requiring both bone-forming osteoblasts and bone-resorbing osteoclasts. Current leading osteoporosis therapies suppress osteoclast-mediated bone resorption but show limited therapeutic effects because osteoblast-mediated bone formation decreases concurrently. We developed a gene therapy strategy for osteoporosis that simultaneously promotes bone formation and suppresses bone resorption by targeting two microRNAs (miRNAs)-miR-214-3p and miR-34a-5p. We modulated the expression of these miRNAs using systemically delivered recombinant adeno-associated viral (rAAV) vectors targeting the bone. rAAV-mediated overexpression of miR-214-3p or inhibition of miR-34a-5p in the skeleton resulted in bone loss in adult mice, resembling osteoporotic bones. Conversely, rAAV-mediated inhibition of miR-214-3p or overexpression of miR-34a-5p reversed bone loss in mouse models for postmenopausal and senile osteoporosis by increasing osteoblast-mediated bone formation and decreasing osteoclast-mediated bone resorption. Notably, these mice did not show any apparent pathological phenotypes in non-skeletal tissues. Mechanistically, inhibiting miR-214-3p upregulated activating transcription factor 4 in osteoblasts and phatase and tensin homolog in osteoclasts, while overexpressing miR-34a-5p downregulated Notch1 in osteoblasts and TGF-ß-induced factor homeobox 2 in osteoclasts. In summary, bone-targeting rAAV-mediated regulation of miR-214-3p or miR-34a-5p is a promising new approach to treat osteoporosis, while limiting adverse effects in non-skeletal tissues.

6.
Calcif Tissue Int ; 109(1): 32-43, 2021 07.
Article in English | MEDLINE | ID: mdl-33675370

ABSTRACT

Osteoporosis is a major health problem in postmenopausal women globally. This study determined the mechanism through which coelogin stimulates osteoblastogenesis and its osteoprotective and bone regenerating potential. Coelogin effect on primary calvarial osteoblast cells was determined by measuring alkaline phosphatase activity, mineralization, osteoblast survival, and apoptosis and protein expression studies. The osteoprotective effect of coelogin was also evaluated on osteopenic adult female Swiss mice. At autopsy, bones were collected for dynamic and histomorphometry studies. Serum samples were also collected for assessment of serum parameters. Coelogin treatment led to increased osteoblast proliferation, survival, differentiation, and mineralization in osteoblast cells. Coelogin supplementation to Ovx mice promoted new bone formation, prevented Ovx-induced deterioration of bone microarchitecture, and enhanced bone regeneration. In addition, signaling studies revealed that coelogin treatment activates the ER-Erk and Akt-dependent signaling pathways which stimulate the osteoblastogenesis in osteoblast cells.


Subject(s)
Mitogen-Activated Protein Kinases , Osteoblasts , Animals , Cell Differentiation , Female , Humans , Mice , Osteogenesis , Ovariectomy , Phenanthrenes , Pyrans , Signal Transduction
7.
PLoS One ; 9(10): e109295, 2014.
Article in English | MEDLINE | ID: mdl-25329833

ABSTRACT

Ulva intestinalis and Ulva compressa are two bloom-forming morphologically-cryptic species of green seaweeds widely accepted as cosmopolitan in distribution. Previous studies have shown that these are two distinct species that exhibit great morphological plasticity with changing seawater salinity. Here we present a phylogeographic assessment of tubular Ulva that we considered belonging to this complex collected from various marine and estuarine green-tide occurrences in a ca. 600 km stretch of the Indian west coast. Maximum Likelihood and Bayesian Inference phylogenetic reconstructions using ITS nrDNA revealed strong endemism of Indian tubular Ulva, with none of the Indian isolates forming part of the already described phylogenetic clades of either U. compressa or U. intestinalis. Due to the straightforward conclusion that Indian isolates form a robust and distinct phylogenetic clade, a description of a new bloom-forming species, Ulva paschima Bast, is formally proposed. Our phylogenetic reconstructions using Neighbor-Joining method revealed evolutionary affinity of this new species with Ulva flexuosa. This is the first molecular assessment of Ulva from the Indian Subcontinent.


Subject(s)
Phylogeny , Phylogeography , Seaweed/genetics , Ulva/genetics , Bayes Theorem , DNA/genetics , Genetic Markers , Salinity , Seawater , Seaweed/physiology , Sequence Alignment , Ulva/physiology
8.
J Biosci ; 39(4): 711-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25116625

ABSTRACT

Epi-endophytic green algae comprise one of the most diverse and phylogenetically primitive groups of green algae and are considered to be ubiquitous in the world's oceans; however, no reports of these algae exist from India. Here we report the serendipitous discovery of Ulvella growing on intertidal green algae Cladophora glomerata and benthic red algae Laurencia obtusa collected from India. DNA barcodes at nuclear ribosomal DNA Internal Transcriber Spacer (nrDNA ITS) 1 and 2 regions for Indian isolates from the west and east coasts have been generated for the first time. Based on morphology and DNA barcoding, isolates were identified as Ulvella leptochaete. Phylogenetic reconstruction of concatenated dataset using Maximum Likelihood method differentiated Indian isolates from other accessions of this alga available in Genbank, albeit with low bootstrap support. Monophyly of Ulvella leptochaete was obvious in both of our phylogenetic analyses. With this first report of epi-endophytic algae from Indian territorial waters, the dire need to catalogue its cryptic diversity is highlighted and avenues of future research are discussed.


Subject(s)
Chlorophyta/classification , Chlorophyta/genetics , DNA Barcoding, Taxonomic/methods , Phylogeny , Chlorophyta/microbiology , DNA, Intergenic/genetics , India , Likelihood Functions , Models, Genetic , Rhodophyta/microbiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...