Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 269(10): 5487-5496, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35704101

ABSTRACT

BACKGROUND: Patients with amyotrophic lateral sclerosis (ALS) show altered cortical excitability. In this study, we measure modulation of spontaneous motor unit potentials (sMUPs) in hand muscles by multifocal cortical stimulation with a newly developed wearable transcranial rotating permanent magnet stimulator (TRPMS). METHODS: We conducted cross-sectional and longitudinal electromyographic assessments in 40 and 20 ALS patients, respectively, of the stimulation-induced peak increase in the count of sMUPs in two hand muscles modulated by unilateral TRPMS stimulation of the primary motor cortex. We measured peak sMUP counts during several short sessions consisting of 10 stimuli over 60 s and 30 s post-stimulation periods. The longitudinal component involved an initial assessment at an early stage of the disease and up to five follow-up assessments at least 3 months apart. RESULTS: TRPMS stimulation produced no device-related adverse effects. It showed an inverted V-shaped modulation of the peak sMUP counts as a function of ALS functional rating scale revised scores. The ratios of ALS subjects showing peak sMUP count increases between early and intermediate stages (χ2 = 4.086, df = 1, p = 0.043) and intermediate and late stages (χ2 = 4.29, df = 1, p = 0.038) in cross-sectional data were significantly different. Longitudinal assessment also produced a significant (z = 2.31, p = 0.021) result, with all subjects showing a post-initial visit increase in peak sMUP counts. CONCLUSIONS: These results are consistent with delayed onset of upper motor neuronal dysfunction with respect to onset of clinical features. However, the above results need to be confirmed in a larger sample of patients and with multiple lines of evidence.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , Amyotrophic Lateral Sclerosis/therapy , Cross-Sectional Studies , Evoked Potentials, Motor/physiology , Humans , Magnetic Phenomena , Transcranial Magnetic Stimulation/methods
2.
J Neuromuscul Dis ; 8(6): 963-972, 2021.
Article in English | MEDLINE | ID: mdl-34250947

ABSTRACT

BACKGROUND: Repeated neuromuscular electrical stimulation in type 1 Myotonic Dystrophy (DM1) has previously been shown to cause an increase in strength and a decrease in hyperexcitability of the tibialis anterior muscle. OBJECTIVE: In this proof-of-principle study our objective was to test the hypothesis that noninvasive repetitive transcranial magnetic stimulation of the primary motor cortex (M1) with a new portable wearable multifocal stimulator causes improvement in muscle function in DM1 patients. METHODS: We performed repetitive stimulation of M1, localized by magnetic resonance imaging, with a newly developed Transcranial Rotating Permanent Magnet Stimulator (TRPMS). Using a randomized within-patient placebo-controlled double-blind TRPMS protocol, we performed unilateral active stimulation along with contralateral sham stimulation every weekday for two weeks in 6 adults. Methods for evaluation of muscle function involved electromyography (EMG), hand dynamometry and clinical assessment using the Medical Research Council scale. RESULTS: All participants tolerated the treatment well. While there were no significant changes clinically, EMG showed significant improvement in nerve stimulus-evoked compound muscle action potential amplitude of the first dorsal interosseous muscle and a similar but non-significant trend in the trapezius muscle, after a short exercise test, with active but not sham stimulation. CONCLUSIONS: We conclude that two-week repeated multifocal cortical stimulation with a new wearable transcranial magnetic stimulator can be safely conducted in DM1 patients to investigate potential improvement of muscle strength and activity. The results obtained, if confirmed and extended by future safety and efficacy trials with larger patient samples, could offer a potential supportive TRPMS treatment in DM1.


Subject(s)
Motor Cortex/physiopathology , Myotonic Dystrophy/physiopathology , Transcranial Magnetic Stimulation/instrumentation , Adult , Aged , Double-Blind Method , Electromyography , Female , Hand/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle Strength , Muscle, Skeletal/physiopathology , Pilot Projects , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL
...