Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Metab Syndr Obes ; 15: 3777-3798, 2022.
Article in English | MEDLINE | ID: mdl-36530587

ABSTRACT

Objective: This study evaluated the effect of microbiome-targeted therapies (pre-, pro-, and synbiotics) on weight loss and other anthropometric outcomes when delivered as an adjunct to traditional weight loss interventions in overweight and obese adults. Methods: A systematic review of three databases (Medline [PubMed], Embase, and the Cochrane Central Register of Controlled Trials) was performed to identify randomized controlled trials published between January 1, 2010 and December 31, 2020, that evaluated anthropometric outcomes following microbiome-targeted supplements in combination with dietary or dietary and exercise interventions. The pooled mean difference (MD) between treatment and control groups was calculated using a random effects model. Results: Twenty-one trials with 1233 adult participants (76.4% female) with overweight or obesity were included. Separate meta-analyses were conducted for probiotics (n=11 trials) and synbiotics (n=10 trials) on each anthropometric outcome; prebiotics were excluded as only a single study was found. Patient characteristics and methodologies varied widely between studies. All studies incorporated some degree of caloric restriction, while only six studies included recommendations for adjunct exercise. Compared with dietary or dietary and exercise interventions only, probiotics resulted in reductions in body weight (MD: -0.73 kg; 95% confidence interval [CI]: -1.02 to -0.44, p < 0.001), fat mass (MD: -0.61 kg; 95% CI: -0.77 to -0.45; p<0.001) and waist circumference (MD: -0.53 cm; 95% CI: -0.99 to -0.07, p=0.024) while synbiotics resulted in reductions in fat mass (MD: -1.53 kg; 95% CI: -2.95 to -0.12, p=0.034) and waist circumference (MD: -1.31 cm; 95% CI: -2.05 to -0.57, p<0.001). Conclusion: This analysis indicates that microbiome-targeted supplements may enhance weight loss and other obesity outcomes in adults when delivered as an adjunct to dietary or dietary and exercise interventions. Personalized therapy to include microbiome-targeted supplements may help to optimize weight loss in overweight and obese individuals.

2.
Genes (Basel) ; 9(3)2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29547587

ABSTRACT

Dietary alteration of the gut microbiome is an important target in the treatment of obesity. Animal and human studies have shown bidirectional weight modulation based on the probiotic formulation used. In this study, we systematically reviewed the literature and performed a meta-analysis to assess the impact of prebiotics, probiotics and synbiotics on body weight, body mass index (BMI) and fat mass in adult human subjects. We searched Medline (PubMed), Embase, the Cochrane Library and the Web of Science to identify 4721 articles, of which 41 were subjected to full-text screening, yielding 21 included studies with 33 study arms. Probiotic use was associated with significant decreases in BMI, weight and fat mass. Studies of subjects consuming prebiotics demonstrated a significant reduction in body weight, whereas synbiotics did not show an effect. Overall, when the utilization of gut microbiome-modulating dietary agents (prebiotic/probiotic/synbiotic) was compared to placebo, there were significant decreases in BMI, weight and fat mass. In summary, dietary agents for the modulation of the gut microbiome are essential tools in the treatment of obesity and can lead to significant decreases in BMI, weight and fat mass. Further studies are needed to identify the ideal dose and duration of supplementation and to assess the durability of this effect.

3.
Curr Oncol Rep ; 18(7): 45, 2016 07.
Article in English | MEDLINE | ID: mdl-27255389

ABSTRACT

The gut microbiome consists of trillions of bacteria which play an important role in human metabolism. Animal and human studies have implicated distortion of the normal microbial balance in obesity and metabolic syndrome. Bacteria causing weight gain are thought to induce the expression of genes related to lipid and carbohydrate metabolism thereby leading to greater energy harvest from the diet. There is a large body of evidence demonstrating that alteration in the proportion of Bacteroidetes and Firmicutes leads to the development of obesity, but this has been recently challenged. It is likely that the influence of gut microbiome on obesity is much more complex than simply an imbalance in the proportion of these phyla of bacteria. Modulation of the gut microbiome through diet, pre- and probiotics, antibiotics, surgery, and fecal transplantation has the potential to majorly impact the obesity epidemic.


Subject(s)
Gastrointestinal Microbiome , Obesity/physiopathology , Animals , Humans , Obesity/microbiology , Obesity/prevention & control , Probiotics/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...