Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J R Soc Interface ; 21(216): 20240106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045680

ABSTRACT

Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, Mastomys natalensis. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, M. natalensis, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in M. natalensis most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.


Subject(s)
Lassa Fever , Lassa virus , Murinae , Animals , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa Fever/virology , Lassa virus/physiology , Murinae/virology , Humans , Models, Biological , Disease Reservoirs/virology , Africa, Western/epidemiology , Seasons , Female
2.
J R Soc Interface ; 21(216): 20240278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955228

ABSTRACT

The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics over 100 years for 100 times in a model gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, haemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These results may help disease management and surveillance strategies support wildlife conservation.


Subject(s)
Models, Biological , Population Dynamics , Animals , Thailand/epidemiology , Cattle , Animals, Wild , Communicable Diseases/epidemiology , Communicable Diseases/veterinary , Communicable Diseases/transmission , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Ruminants/microbiology
3.
J R Soc Interface ; 21(210): 20230425, 2024 01.
Article in English | MEDLINE | ID: mdl-38196378

ABSTRACT

The speed of spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease 2019 (COVID-19) pandemic highlights the importance of understanding how infections are transmitted in a highly connected world. Prior to vaccination, changes in human mobility patterns were used as non-pharmaceutical interventions to eliminate or suppress viral transmission. The rapid spread of respiratory viruses, various intervention approaches, and the global dissemination of SARS-CoV-2 underscore the necessity for epidemiological models that incorporate mobility to comprehend the spread of the virus. Here, we introduce a metapopulation susceptible-exposed-infectious-recovered model parametrized with human movement data from 340 cities in China. Our model replicates the early-case trajectory in the COVID-19 pandemic. We then use machine learning algorithms to determine which network properties best predict spread between cities and find travel time to be most important, followed by the human movement-weighted personalized PageRank. However, we show that travel time is most influential locally, after which the high connectivity between cities reduces the impact of travel time between individual cities on transmission speed. Additionally, we demonstrate that only significantly reduced movement substantially impacts infection spread times throughout the network.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Cities , SARS-CoV-2
4.
Nat Commun ; 14(1): 6854, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891177

ABSTRACT

The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Animals, Wild , Mammals , Risk Factors , Livestock
5.
Proc Biol Sci ; 289(1975): 20220397, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35611534

ABSTRACT

Global changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given that several closely related viruses have been discovered and sarbecovirus-host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.


Subject(s)
Chiroptera , Viruses , Animals , COVID-19 , Chiroptera/virology , Humans , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL