Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895321

ABSTRACT

Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.

2.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37886472

ABSTRACT

Schlemm's canal (SC) is central in intraocular pressure regulation but requires much characterization. It has distinct inner and outer walls, each composed of Schlemm's canal endothelial cells (SECs) with different morphologies and functions. Recent transcriptomic studies of the anterior segment added important knowledge, but were limited in power by SEC numbers or did not focus on SC. To gain a more comprehensive understanding of SC biology, we performed bulk RNA sequencing on C57BL/6J SC, blood vessel, and lymphatic endothelial cells from limbal tissue (~4500 SECs). We also analyzed mouse limbal tissues by single-cell and single-nucleus RNA sequencing (C57BL/6J and 129/Sj strains), successfully sequencing 903 individual SECs. Together, these datasets confirm that SC has molecular characteristics of both blood and lymphatic endothelia with a lymphatic phenotype predominating. SECs are enriched in pathways that regulate cell-cell junction formation pointing to the importance of junctions in determining SC fluid permeability. Importantly, and for the first time, our analyses characterize 3 molecular classes of SECs, molecularly distinguishing inner wall from outer wall SECs and discovering two inner wall cell states that likely result from local environmental differences. Further, and based on ligand and receptor expression patterns, we document key interactions between SECs and cells of the adjacent trabecular meshwork (TM) drainage tissue. Also, we present cell type expression for a collection of human glaucoma genes. These data provide a new molecular foundation that will enable the functional dissection of key homeostatic processes mediated by SECs as well as the development of new glaucoma therapeutics.

3.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35129590

ABSTRACT

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Subject(s)
Aqueous Humor/physiology , Consensus , Glaucoma/metabolism , Intraocular Pressure/physiology , Ocular Hypertension/metabolism , Trabecular Meshwork/metabolism , Animals , Disease Models, Animal , Glaucoma/physiopathology , Mice , Ocular Hypertension/physiopathology , Tonometry, Ocular
4.
JAMA Ophthalmol ; 140(1): 11-18, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34792559

ABSTRACT

IMPORTANCE: Open-angle glaucoma may continue to progress despite significant lowering of intraocular pressure (IOP). Preclinical research has suggested that enhancing mitochondrial function and energy production may enhance retinal ganglion cell survival in animal models of glaucoma, but there is scant information on its effectiveness in a clinical setting. OBJECTIVE: To test the hypothesis that a combination of nicotinamide and pyruvate can improve retinal ganglion cell function in human glaucoma as measured with standard automated perimetry. DESIGN, SETTING, AND PARTICIPANTS: In this phase 2, randomized, double-blind, placebo-controlled clinical trial at a single academic institution, 197 patients were assessed for eligibility. Of these, 42 patients with treated open-angle glaucoma and moderate visual field loss in at least 1 eye were selected for inclusion and randomized. A total of 32 completed the study and were included in the final analysis. The mean (SD) age was 64.6 (9.8) years. Twenty-one participants (66%) were female. Participant race and ethnicity data were collected via self-report to ensure the distribution reflected that observed in clinical practice in the US but are not reported here to protect patient privacy. Recruitment took place in April 2019 and patients were monitored through December 2020. Data were analyzed from January to May 2021. INTERVENTIONS: Ascending oral doses of nicotinamide (1000 to 3000 mg) and pyruvate (1500 to 3000 mg) vs placebo (2:1 randomization). MAIN OUTCOMES AND MEASURES: Number of visual field test locations improving beyond normal variability in the study eye. Secondary end points were the rates of change of visual field global indices (mean deviation [MD], pattern standard deviation [PSD], and visual field index [VFI]). RESULTS: Twenty-two of 29 participants (76%) randomized to the intervention group and 12 of 13 participants (92%) randomized to placebo received their allocation, and 32 participants (32 eyes; ratio 21:11) completed the study (21 from the intervention group and 11 from the placebo group). Median (IQR) follow-up time was 2.2 (2.0-2.4) months. No serious adverse events were reported during the study. The number of improving test locations was significantly higher in the treatment group than in the placebo group (median [IQR], 15 [6-25] vs 7 [6-11]; P = .005). Rates of change of PSD suggested improvement with treatment compared with placebo (median, -0.06 vs 0.02 dB per week; 95% CI, 0.02 to 0.24; P = .02) but not MD (0.04 vs -0.002 dB per week; 95% CI, -0.27 to 0.09; P = .35) or VFI (0.09 vs -0.02% per week; 95% CI, -0.53 to 0.36; P = .71). CONCLUSIONS AND RELEVANCE: A combination of nicotinamide and pyruvate yielded significant short-term improvement in visual function, supporting prior experimental research suggesting a role for these agents in neuroprotection for individuals with glaucoma and confirming the need for long-term studies to establish their usefulness in slowing progression. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03797469.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Animals , Double-Blind Method , Female , Glaucoma, Open-Angle/drug therapy , Humans , Intraocular Pressure , Male , Niacinamide/therapeutic use , Pyruvic Acid/therapeutic use
5.
Nat Commun ; 12(1): 4877, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385434

ABSTRACT

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Subject(s)
DNA-Binding Proteins/metabolism , Disease Models, Animal , Glaucoma/physiopathology , Intraocular Pressure/physiology , Trabecular Meshwork/physiopathology , Transcription Factors/metabolism , Animals , Aqueous Humor/metabolism , Chromatin Immunoprecipitation Sequencing/methods , DNA-Binding Proteins/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Glaucoma/genetics , Glaucoma/metabolism , HEK293 Cells , Humans , Intraocular Pressure/genetics , Mice, Inbred C57BL , Mice, Knockout , RNA-Seq/methods , Trabecular Meshwork/metabolism , Transcription Factors/genetics
6.
Genetics ; 218(1)2021 05 17.
Article in English | MEDLINE | ID: mdl-33734376

ABSTRACT

The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.


Subject(s)
Proline/biosynthesis , Pyrroline Carboxylate Reductases/genetics , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Phenotype , Proline/chemistry , Proline/genetics , Pyrroline Carboxylate Reductases/metabolism
7.
Dis Model Mech ; 14(2)2021 02 19.
Article in English | MEDLINE | ID: mdl-33462143

ABSTRACT

Variants in the LIM homeobox transcription factor 1-beta (LMX1B) gene predispose individuals to elevated intraocular pressure (IOP), a key risk factor for glaucoma. However, the effect of LMX1B mutations varies widely between individuals. To better understand the mechanisms underlying LMX1B-related phenotypes and individual differences, we backcrossed the Lmx1bV265D (also known as Lmx1bIcst ) allele onto the C57BL/6J (B6), 129/Sj (129), C3A/BLiA-Pde6b+ /J (C3H) and DBA/2J-Gpnmb+ (D2-G) mouse strain backgrounds. Strain background had a significant effect on the onset and severity of ocular phenotypes in Lmx1bV265D/+ mutant mice. Mice of the B6 background were the most susceptible to developing abnormal IOP distribution, severe anterior segment developmental anomalies (including malformed eccentric pupils, iridocorneal strands and corneal abnormalities) and glaucomatous nerve damage. By contrast, Lmx1bV265D mice of the 129 background were the most resistant to developing anterior segment abnormalities, had less severe IOP elevation than B6 mutants at young ages and showed no detectable nerve damage. To identify genetic modifiers of susceptibility to Lmx1bV265D -induced glaucoma-associated phenotypes, we performed a mapping cross between mice of the B6 (susceptible) and 129 (resistant) backgrounds. We identified a modifier locus on Chromosome 18, with the 129 allele(s) substantially lessening severity of ocular phenotypes, as confirmed by congenic analysis. By demonstrating a clear effect of genetic background in modulating Lmx1b-induced phenotypes, providing a panel of strains with different phenotypic severities and identifying a modifier locus, this study lays a foundation for better understanding the roles of LMX1B in glaucoma with the goal of developing new treatments.


Subject(s)
Anterior Eye Segment/physiopathology , Eye Abnormalities/genetics , Genetic Predisposition to Disease , Glaucoma/genetics , LIM-Homeodomain Proteins/genetics , Transcription Factors/genetics , Alleles , Animals , Crosses, Genetic , Disease Models, Animal , Female , Genes, Homeobox , Genetic Background , Genotype , Intraocular Pressure , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Optic Nerve/pathology , Phenotype , Species Specificity
8.
Proc Natl Acad Sci U S A ; 117(52): 33619-33627, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318177

ABSTRACT

Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.


Subject(s)
Glaucoma/metabolism , Glucose/metabolism , Neuroprotection , Neuroprotective Agents/pharmacology , Pyruvic Acid/metabolism , Sirolimus/pharmacology , Animals , Disease Models, Animal , Glaucoma/pathology , Glaucoma/physiopathology , Intraocular Pressure/drug effects , Mice, Inbred C57BL , Mice, Inbred DBA , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neuroprotection/drug effects , Rats, Sprague-Dawley , Retina/drug effects , Retina/pathology , Retina/physiopathology , TOR Serine-Threonine Kinases/metabolism
9.
J Neuroinflammation ; 17(1): 336, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176797

ABSTRACT

BACKGROUND: The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration. METHODS: A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression. RESULTS: Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia. CONCLUSIONS: C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1 signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.


Subject(s)
Nerve Degeneration/metabolism , Optic Nerve/metabolism , Receptors, Complement/biosynthesis , Receptors, Complement/deficiency , Animals , Animals, Newborn , Cells, Cultured , Female , Gene Regulatory Networks/physiology , Male , Mice , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Optic Nerve/pathology , Receptors, Complement/genetics
10.
Mol Brain ; 13(1): 81, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32450896

ABSTRACT

Glaucoma is the leading cause of irreversible vision loss. Ocular hypertension is a major risk factor for glaucoma and recent work has demonstrated critical early neuroinflammatory insults occur in the optic nerve head following ocular hypertension. Microglia and infiltrating monocytes are likely candidates to drive these neuroinflammatory insults. However, the exact molecular identity / transcriptomic profile of microglia following ocular hypertensive insults is unknown. To elucidate the molecular identity of microglia after long-term exposure to ocular hypertension, we used a mouse model of glaucoma (DBA/2 J). We performed RNA-sequencing of microglia mRNA from the optic nerve head at a time point following ocular hypertensive insults, but preceding detectable neurodegeneration (with microglia identified as being CD45lo/CD11b+/CD11c-). Furthermore, RNA-sequencing was performed on optic nerve head microglia from mice treated with radiation therapy, a potent therapy preventing neuroinflammatory insults. Transcriptomic profiling of optic nerve head microglia mRNA identifies metabolic priming with marked changes in mitochondrial gene expression, and changes to phagocytosis, inflammatory, and sensome pathways. The data predict that many functions of microglia that help maintain tissue homeostasis are affected. Comparative analysis of these data with data from previously published whole optic nerve head tissue or monocyte-only samples from DBA/2 J mice demonstrate that many of the neuroinflammatory signatures in these data sets arise from infiltrating monocytes and not reactive microglia. Finally, our data demonstrate that prophylactic radiation therapy of DBA/2 J mice potently abolishes these microglia metabolic transcriptomic changes at the same time points. Together, our data provide a unique resource for the community to help drive further hypothesis generation and testing in glaucoma.


Subject(s)
Gene Expression Regulation , Homeostasis/genetics , Microglia/metabolism , Microglia/pathology , Ocular Hypertension/genetics , Ocular Hypertension/pathology , Optic Disk/metabolism , Animals , Down-Regulation/genetics , Female , Gene Expression Regulation/radiation effects , Homeostasis/radiation effects , Intraocular Pressure/genetics , Intraocular Pressure/radiation effects , Mice, Inbred DBA , Microglia/radiation effects , Monocytes/metabolism , Monocytes/pathology , Ocular Hypertension/physiopathology , Optic Disk/pathology , Optic Disk/radiation effects , Phagocytosis/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics , Up-Regulation/genetics
11.
Dis Model Mech ; 13(5)2020 05 29.
Article in English | MEDLINE | ID: mdl-32152063

ABSTRACT

Glaucoma is a leading cause of blindness, affecting up to 70 million people worldwide. High intraocular pressure (IOP) is a major risk factor for glaucoma. It is well established that inefficient aqueous humor (AqH) outflow resulting from structural or functional alterations in ocular drainage tissues causes high IOP, but the genes and pathways involved are poorly understood. We previously demonstrated that mutations in the gene encoding the serine protease PRSS56 induces ocular angle closure and high IOP in mice and identified reduced ocular axial length as a potential contributing factor. Here, we show that Prss56-/- mice also exhibit an abnormal iridocorneal angle configuration characterized by a posterior shift of ocular drainage structures relative to the ciliary body and iris. Notably, we show that retina-derived PRSS56 is required between postnatal days 13 and 18 for proper iridocorneal configuration and that abnormal positioning of the ocular drainage tissues is not dependent on ocular size reduction in Prss56-/- mice. Furthermore, we demonstrate that the genetic context modulates the severity of IOP elevation in Prss56 mutant mice and describe a progressive degeneration of ocular drainage tissues that likely contributes to the exacerbation of the high IOP phenotype observed on the C3H/HeJ genetic background. Finally, we identify five rare PRSS56 variants associated with human primary congenital glaucoma, a condition characterized by abnormal development of the ocular drainage structures. Collectively, our findings point to a role for PRSS56 in the development and maintenance of ocular drainage tissues and IOP homeostasis, and provide new insights into glaucoma pathogenesis.


Subject(s)
Disease Susceptibility , Eye/pathology , Eye/physiopathology , Intraocular Pressure , Serine Proteases/deficiency , Amino Acid Sequence , Animals , Cornea/pathology , Female , Glaucoma/genetics , Glaucoma/pathology , Iris/pathology , Male , Mice, Knockout , Mice, Mutant Strains , Organ Size , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/metabolism
12.
Invest Ophthalmol Vis Sci ; 60(10): 3283-3296, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31369031

ABSTRACT

Purpose: Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods: Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results: URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions: Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma.


Subject(s)
Axons/pathology , Glaucoma/genetics , Haploinsufficiency/genetics , Homeodomain Proteins/genetics , Nerve Degeneration/genetics , Optic Disk/pathology , Retinal Ganglion Cells/pathology , Animals , Blood Pressure/physiology , Blotting, Western , Disease Models, Animal , Female , Gene Expression Regulation/physiology , Glaucoma/pathology , Intraocular Pressure/physiology , Male , Mice , Mice, Inbred DBA , Nerve Degeneration/pathology , Slit Lamp Microscopy
13.
Mol Neurodegener ; 14(1): 6, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670050

ABSTRACT

BACKGROUND: Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear. METHODS: To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation). RESULTS: Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes. CONCLUSIONS: These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury.


Subject(s)
Glaucoma/pathology , Monocytes/pathology , Nerve Degeneration/pathology , Animals , Chemotaxis, Leukocyte , Mice , Optic Nerve/pathology
14.
Nat Commun ; 9(1): 2278, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891935

ABSTRACT

Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss, yet much of the genetic risk remains unaccounted for, especially in African-Americans who have a higher risk for developing POAG. We conduct a multiethnic genome-wide association study (GWAS) of POAG in the GERA cohort, with replication in the UK Biobank (UKB), and vice versa, GWAS in UKB with replication in GERA. We identify 24 loci (P < 5.0 × 10-8), including 14 novel, of which 9 replicate (near FMNL2, PDE7B, TMTC2, IKZF2, CADM2, DGKG, ANKH, EXOC2, and LMX1B). Functional studies support intraocular pressure-related influences of FMNL2 and LMX1B, with certain Lmx1b mutations causing high IOP and glaucoma resembling POAG in mice. The newly identified loci increase the proportion of variance explained in each GERA race/ethnicity group, with the largest gain in African-Americans (0.5-3.1%). A meta-analysis combining GERA and UKB identifies 24 additional loci. Our study provides important insights into glaucoma pathogenesis.


Subject(s)
Glaucoma, Open-Angle/genetics , Aged , Aged, 80 and over , Animals , Cohort Studies , Ethnicity/genetics , Female , Formins , Gene Expression , Gene Knockdown Techniques , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intraocular Pressure/genetics , LIM-Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Middle Aged , Mutation , Polymorphism, Single Nucleotide , Proteins/genetics , Retinal Ganglion Cells/metabolism , Risk Factors , Transcription Factors/genetics , United Kingdom
15.
Cell Death Dis ; 9(6): 705, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899326

ABSTRACT

The cJun N-terminal kinases (JNKs; JNK1, JNK2, and JNK3) promote degenerative processes after neuronal injury and in disease. JNK2 and JNK3 have been shown to promote retinal ganglion cell (RGC) death after optic nerve injury. In their absence, long-term survival of RGC somas is significantly increased after mechanical optic nerve injury. In glaucoma, because optic nerve damage is thought to be a major cause of RGC death, JNKs are an important potential target for therapeutic intervention. To assess the role of JNK2 and JNK3 in an ocular hypertensive model of glaucoma, null alleles of Jnk2 and Jnk3 were backcrossed into the DBA/2J (D2) mouse. JNK activation occurred in RGCs following increased intraocular pressure in D2 mice. However, deficiency of both Jnk2 and Jnk3 together did not lessen optic nerve damage or RGC death. These results differentiate the molecular pathways controlling cell death in ocular hypertensive glaucoma compared with mechanical optic nerve injury. It is further shown that JUN, a pro-death component of the JNK pathway in RGCs, can be activated in glaucoma in the absence of JNK2 and JNK3. This implicates JNK1 in glaucomatous RGC death. Unexpectedly, at younger ages, Jnk2-deficient mice were more likely to develop features of glaucomatous neurodegeneration than D2 mice expressing Jnk2. This appears to be due to a neuroprotective effect of JNK2 and not due to a change in intraocular pressure. The Jnk2-deficient context also unmasked a lesser role for Jnk3 in glaucoma. Jnk2 and Jnk3 double knockout mice had a modestly increased risk of neurodegeneration compared with mice only deficient in Jnk2. Overall, these findings are consistent with pleiotropic effects of JNK isoforms in glaucoma and suggest caution is warranted when using JNK inhibitors to treat chronic neurodegenerative conditions.


Subject(s)
Glaucoma/enzymology , Glaucoma/pathology , Mitogen-Activated Protein Kinase 9/deficiency , Nerve Degeneration/enzymology , Nerve Degeneration/pathology , Ocular Hypertension/enzymology , Ocular Hypertension/pathology , Animals , Axons/metabolism , Cell Death , Enzyme Activation , Gene Expression Regulation , Glaucoma/physiopathology , Intraocular Pressure , Mice, Inbred DBA , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Nerve Degeneration/physiopathology , Ocular Hypertension/physiopathology , Optic Nerve/enzymology , Optic Nerve/pathology , Optic Nerve/physiopathology , Retina/enzymology , Retina/pathology , Retina/physiopathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology
16.
Commun Integr Biol ; 11(1): e1356956, 2018.
Article in English | MEDLINE | ID: mdl-29497468

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a key molecule in several cellular processes and is essential for healthy mitochondrial metabolism. We recently reported that mitochondrial dysfunction is among the very first changes to occur within retinal ganglion cells during initiation of glaucoma in DBA/2J mice. Furthermore, we demonstrated that an age-dependent decline of NAD contributes to mitochondrial dysfunction and vulnerability to glaucoma. The decrease in NAD renders retinal ganglion cells vulnerable to a metabolic crisis following periods of high intraocular pressure. Treating mice with the NAD precursor nicotinamide (the amide form of vitamin B3) inhibited many age- and high intraocular pressure- dependent changes with the highest tested dose decreasing the likelihood of developing glaucoma by ∼10-fold. In this communication, we present further evidence of the neuroprotective effects of nicotinamide against glaucoma in mice, including its prevention of optic nerve excavation and axon loss as assessed by histologic analysis and axon counting. We also show analyses of age- and intraocular pressure- dependent changes in transcripts of NAD producing enzymes within retinal ganglion cells and that nicotinamide treatment prevents these transcriptomic changes.

17.
Microsyst Nanoeng ; 4: 35, 2018.
Article in English | MEDLINE | ID: mdl-31057923

ABSTRACT

For patients who are unresponsive to pharmacological treatments of glaucoma, an implantable glaucoma drainage devices (GDD) are often used to manage the intraocular pressure. However, the microscale channel that removes excess aqueous humor from the anterior chamber often gets obstructed due to biofouling, which necessitates additional surgical intervention. Here we demonstrate the proof-of-concept for smart self-clearing GDD by integrating magnetic microactuators inside the drainage tube of GDD. The magnetic microactuators can be controlled using externally applied magnetic fields to mechanically clear biofouling-based obstruction, thereby eliminating the need for surgical intervention. In this work, our prototype magnetic microactuators were fabricated using low-cost maskless photolithography to expedite design iteration. The fabricated devices were evaluated for their static and dynamic mechanical responses. Using transient numerical analysis, the fluid-structure interaction of our microactuator inside a microtube was characterized to better understand the amount of shear force generated by the device motion. Finally, the anti-biofouling performance of our device was evaluated using fluorescein isothiocyanate labeled bovine serum albumin. The microactuators were effective in removing proteinaceous film deposited on device surface as well as on the inner surface of the microchannel, which supports our hypothesis that a smart self-clearing GDD may be possible by integrating microfabricated magnetic actuators in chronically implanted microtubes.

18.
J Glaucoma ; 26(12): 1161-1168, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28858158

ABSTRACT

Mitochondrial dysfunction may be an important, if not essential, component of human glaucoma. Using transcriptomics followed by molecular and neurobiological techniques, we have recently demonstrated that mitochondrial dysfunction within retinal ganglion cells is an early feature in the DBA/2J mouse model of inherited glaucoma. Guided by these findings, we discovered that the retinal level of nicotinamide adenine dinucleotide (NAD, a key molecule for mitochondrial health) declines in an age-dependent manner. We hypothesized that this decline in NAD renders retinal ganglion cells susceptible to damage during periods of elevated intraocular pressure. To replete NAD levels in this glaucoma, we administered nicotinamide (the amide of vitamin B3). At the lowest dose tested, nicotinamide robustly protected from glaucoma (~70% of eyes had no detectable glaucomatous neurodegeneration). At this dose, nicotinamide had no influence on intraocular pressure and so its effect was neuroprotective. At the highest dose tested, 93% of eyes had no detectable glaucoma. This represents a ~10-fold decrease in the risk of developing glaucoma. At this dose, intraocular pressure still became elevated but there was a reduction in the degree of elevation showing an additional benefit. Thus, nicotinamide is unexpectedly potent at preventing this glaucoma and is an attractive option for glaucoma therapeutics. Our findings demonstrate the promise for both preventing and treating glaucoma by interventions that bolster metabolism during increasing age and during periods of elevated intraocular pressure. Nicotinamide prevents age-related declines in NAD (a decline that occurs in different genetic contexts and species). NAD precursors are reported to protect from a variety of neurodegenerative conditions. Thus, nicotinamide may provide a much needed neuroprotective treatment against human glaucoma. This manuscript summarizes human data implicating mitochondria in glaucoma, and argues for studies to further assess the safety and efficacy of nicotinamide in human glaucoma care.


Subject(s)
Glaucoma/drug therapy , Intraocular Pressure/physiology , Niacinamide/therapeutic use , Optic Nerve Diseases , Animals , Glaucoma/complications , Glaucoma/metabolism , Humans , Intraocular Pressure/drug effects , Optic Nerve Diseases/etiology , Optic Nerve Diseases/metabolism , Optic Nerve Diseases/prevention & control , Vitamin B Complex/therapeutic use
19.
Front Neurosci ; 11: 232, 2017.
Article in English | MEDLINE | ID: mdl-28487632

ABSTRACT

Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD+ and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, WldS , decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that WldS increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than WldS or nicotinamide alone). Importantly, nicotinamide and WldS protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.

20.
Proc Natl Acad Sci U S A ; 114(19): E3839-E3848, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28446616

ABSTRACT

Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.


Subject(s)
Complement C3/immunology , Glaucoma/immunology , Retinal Ganglion Cells/immunology , Up-Regulation/immunology , Animals , Complement C3/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/immunology , Glaucoma/genetics , Glaucoma/pathology , Glaucoma/prevention & control , Intraocular Pressure/immunology , Mice , Mice, Inbred DBA , Mice, Knockout , Optic Nerve/immunology , Optic Nerve/pathology , Quinazolines/pharmacology , Retinal Ganglion Cells/pathology , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Tyrphostins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...