Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22272915

ABSTRACT

ObjectiveTo determine how the severity of successively dominant SARS-CoV-2 variants changed over the course of the COVID-19 pandemic. DesignRetrospective cohort analysis. SettingCommunity- and hospital-sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board. ParticipantsAll sequenced non-nosocomial adult COVID-19 cases in NHS GG&C infected with the relevant SARS-CoV-2 lineages during analysis periods. B.1.177/Alpha: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta: 1st July - 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron: 1st - 31st December 2021 (n = 3858). Main outcome measuresAdmission to hospital, ICU, or death within 28 days of positive COVID-19 test ResultsFor B.1.177/Alpha, 300 of 807 B.1.177 cases were recorded as hospitalised or worse, compared to 232 of 833 Alpha cases. After adjustment, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177. For Alpha/Delta, 113 of 2104 Alpha cases were recorded as hospitalised or worse, compared to 230 of 3448 Delta cases. After adjustment, the cumulative odds ratio was 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha. For non-AY.4.2 Delta/AY.4.2 Delta, 845 of 8644 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 101 of 969 AY.4.2 Delta cases. After adjustment, the cumulative odds ratio was 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. For non-AY.4.2 Delta/Omicron, 30 of 1164 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 26 of 2694 Omicron cases. After adjustment, the median cumulative odds ratio was 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta. ConclusionsThe direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity demonstrates that severity associated with future SARS-CoV-2 variants is unpredictable.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21268111

ABSTRACT

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron, the fifth VOC to be described, harbours 30 amino acid mutations in spike including 15 in the receptor-binding domain. Here, we demonstrate substantial evasion of neutralisation by Omicron in vitro using sera from vaccinated individuals. Importantly, these data are mirrored by a substantial reduction in real-world vaccine effectiveness that is partially restored by booster vaccination. We also demonstrate that Omicron does not induce cell syncytia and favours a TMPRSS2-independent endosomal entry pathway. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21260128

ABSTRACT

ObjectivesThe SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. MethodsIn this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. ResultsOur cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus non-Alpha variant). ConclusionsThe Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21259327

ABSTRACT

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-74808

ABSTRACT

PURPOSE: Correct use of inhaler devices is fundamental to effective asthma management but represents an important challenge for patients. The correct inhalation manoeuvre differs markedly for different inhaler types. The objective of this study was to compare outcomes for patients prescribed the same inhaler device versus mixed device types for asthma controller and reliever therapy. METHODS: This retrospective observational study identified patients with asthma (ages 4-80 years) in a large primary care database who were prescribed an inhaled corticosteroid (ICS) for the first time. We compared outcomes for patients prescribed the same breath-actuated inhaler (BAI) for ICS controller and salbutamol reliever versus mixed devices (BAI for controller and pressurised metered-dose inhaler [pMDI] for reliever). The 2-year study included 1 baseline year before the ICS prescription (to identify and correct for confounding factors) and 1 outcome year. Endpoints were asthma control (defined as no hospital attendance for asthma, oral corticosteroids, or antibiotics for lower respiratory tract infection) and severe exacerbations (hospitalisation or oral corticosteroids for asthma). RESULTS: Patients prescribed the same device (n=3,428) were significantly more likely to achieve asthma control (adjusted odds ratio, 1.15; 95% confidence interval [CI], 1.02-1.28) and recorded significantly lower severe exacerbation rates (adjusted rate ratio, 0.79; 95% CI, 0.68-0.93) than those prescribed mixed devices (n=5,452). CONCLUSIONS: These findings suggest that, when possible, the same device should be prescribed for both ICS and reliever therapy when patients are initiating ICS.


Subject(s)
Humans , Adrenal Cortex Hormones , Albuterol , Anti-Bacterial Agents , Asthma , Inhalation , Nebulizers and Vaporizers , Odds Ratio , Prescriptions , Primary Health Care , Respiratory System , Retrospective Studies
6.
Article in English | WPRIM (Western Pacific) | ID: wpr-13726

ABSTRACT

Despite international and national guidelines, poor asthma control remains an issue. Asthma exacerbations are costly to both the individual, and the healthcare provider. Improvements in our understanding of the therapeutic benefit of asthma therapies suggest that, in general, while long-acting bronchodilator therapy improves asthma symptoms, the anti-inflammatory activity of inhaled corticosteroids reduces acute asthma exacerbations. Studies have explored factors which could be predictive of exacerbations. A history of previous exacerbations, poor asthma control, poor inhaler technique, a history of lower respiratory tract infections, poor adherence to medication, the presence of allergic rhinitis, gastro-oesophageal reflux disease, psychological dysfunction, smoking and obesity have all been implicated as having a predictive role in the future risk of asthma exacerbation. Here we review the current literature and discuss this in the context of primary care management of asthma.


Subject(s)
Humans , Adrenal Cortex Hormones , Asthma , Disease Progression , Gastroesophageal Reflux , Health Personnel , Nebulizers and Vaporizers , Obesity , Primary Health Care , Respiratory Tract Infections , Rhinitis , Rhinitis, Allergic, Perennial , Smoke , Smoking
SELECTION OF CITATIONS
SEARCH DETAIL