Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-457692

ABSTRACT

The newly emerging variants of SARS-CoV-2 from India (Delta variant) and South America (Lambda variant) have led to a higher infection rate of either vaccinated or unvaccinated people. We found that sera from Pfizer-BioNTech vaccine remain high reactivity toward the receptor binding domain (RBD) of Delta variant while it drops dramatically toward that of Lambda variant. Interestingly, the overall titer of antibodies of Pfizer-BioNTech vaccinated individuals drops 3-fold after 6 months, which could be one of major reasons for breakthrough infections, emphasizing the importance of potential third boost shot. While a therapeutic antibody, Bamlanivimab, decreases binding affinity to Delta variant by ~20 fold, it fully lost binding to Lambda variant. Structural modeling of complexes of RBD with human receptor, Angiotensin Converting Enzyme 2 (ACE2), and Bamlanivimab suggest the potential basis of the change of binding. The data suggest possible danger and a potential surge of Lambda variant in near future.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-431305

ABSTRACT

We generated several versions of the receptor binding domain (RBD) of the Spike protein with mutations existing within newly emerging variants from South Africa and Brazil. We found that the mutant RBD with K417N, E484K, and N501Y exchanges has higher binding affinity to the human receptor compared to the wildtype RBD. This mutated version of RBD also completely abolishes the binding to a therapeutic antibody, Bamlanivimab, in vitro.

3.
Protein & Cell ; (12): 8-16, 2013.
Article in English | WPRIM (Western Pacific) | ID: wpr-757829

ABSTRACT

T cell recognition of foreign peptide antigen and tolerance to self peptides is key to the proper function of the immune system. Usually, in the thymus T cells that recognize self MHC + self peptides are deleted and those with the potential to recognize self MHC + foreign peptides are selected to mature. However there are exceptions to these rules. Autoimmunity and allergy are two of the most common immune diseases that can be related to recognition of self. Many genes work together to lead to autoimmunity. Of those, particular MHC alleles are the most strongly associated, reflecting the key importance of MHC presentation of self peptides in autoimmunity. T cells specific for combinations of self MHC and self peptides may escape thymus deletion, and thus be able to drive autoimmunity, for several reasons: the relevant self peptide may be presented at low abundance in the thymus but at high level in particular peripheral tissues; the relevant self peptide may bind to MHC in an unusual register, not present in the thymus but apparent elsewhere; finally the relevant self peptide may be post translationally modified in a tissue specific fashion. In some types of allergy, the peptide + MHC combination may also be fully derived from self. However the combination in question may be modified by the presence of other ligands, such as small drug molecules or metal ions. Thus these types of allergies may act like the post translationally modified peptides involved some types of autoimmunity.


Subject(s)
Animals , Humans , Autoantigens , Allergy and Immunology , Autoimmunity , HLA Antigens , Allergy and Immunology , Hypersensitivity , Allergy and Immunology , Receptors, Antigen, T-Cell , Metabolism , T-Lymphocytes , Allergy and Immunology , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...