Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-516530

ABSTRACT

Many bioactive peptides demonstrated therapeutic effects over-complicated diseases, such as antiviral, antibacterial, anticancer, etc. Similar to the generating de novo chemical compounds, with the accumulated bioactive peptides as a training set, it is possible to generate abundant potential bioactive peptides with deep learning. Such techniques would be significant for drug development since peptides are much easier and cheaper to synthesize than compounds. However, there are very few deep learning-based peptide generating models. Here, we have created an LSTM model (named LSTM_Pep) to generate de novo peptides and finetune learning to generate de novo peptides with certain potential therapeutic effects. Remarkably, the Antimicrobial Peptide Database has fully utilized in this work to generate various kinds of potential active de novo peptide. We proposed a pipeline for screening those generated peptides for a given target, and use Main protease of SARS-COV-2 as concept-of-proof example. Moreover, we have developed a deep learning-based protein-peptide prediction model (named DeepPep) for fast screening the generated peptides for the given targets. Together with the generating model, we have demonstrated iteratively finetune training, generating and screening peptides for higher predicted binding affinity peptides can be achieved. Our work sheds light on to the development of deep learning-based methods and pipelines to effectively generating and getting bioactive peptides with a specific therapeutic effect, and showcases how artificial intelligence can help discover de novo bioactive peptides that can bind to a particular target.

SELECTION OF CITATIONS
SEARCH DETAIL
...