Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 524: 490-503, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29679935

ABSTRACT

We have carried out an extensive grand canonical Monte Carlo simulation to investigate the adsorption of neon and xenon on graphite. The adsorbate collision diameters of neon and xenon are smaller and greater respectively, than the commensurate graphite lattice spacing λ=3×3R300 of 0.426 nm. Simulated isotherms and isosteric heats were obtained using a graphite model that has been shown to describe successfully the adsorbate transitions for krypton, methane and nitrogen by Prasetyo et al. (2017), which have collision diameters close to λ. Neon does not exhibit commensurate (C) packing because the gain in the intermolecular potential interactions in the incommensurate (IC) packing when molecules move away from carbon hexagon centres, does not compensate for the increase in the solid-fluid potential energy. Xenon, on the other hand, exhibits IC packing because its molecular size is greater than λ. Nevertheless, at a sufficiently high chemical potential, the first layer of xenon changes from the IC to C packing (in contrast to what is observed for krypton, nitrogen and methane). This transition occurs because the decrease in the xenon intermolecular interactions is sufficiently compensated by the increase in the solid-fluid interaction, and the increase in the fluid-fluid interactions between molecules in the first layer and those in the second layer. This finding is supported by the X-ray diffraction study by Mowforth et al. (1986) and Morishige et al. (1990).

2.
J Colloid Interface Sci ; 478: 402-12, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27343464

ABSTRACT

Adsorption isotherms and isosteric heats of krypton on a highly graphitized carbon black, Carbopack F, have been studied with a combination of Monte Carlo simulation and high-resolution experiments at 77K and 87K. Our investigation sheds light on the microscopic origin of the experimentally observed, horizontal hysteresis loop in the first layer, and the vertical hysteresis-loop in the second layer, and is found to be in agreement with our recent Monte Carlo simulation study (Diao et al., 2015). From detailed analysis of the adsorption isotherm, the latter is attributed to the compression of an imperfect solid-like state in the first layer, to form a hexagonally packed, solid-like state, immediately following the first order condensation of the second layer. To ensure that capillary condensation in the confined spaces between microcrystallites of Carbopack F does not interfere with these hysteresis loops, we carried out simulations of krypton adsorption in the confined space of a wedge-shaped pore that mimics the interstices between particles. These simulations show that, up to the third layer, any such interference is negligible.

SELECTION OF CITATIONS
SEARCH DETAIL
...