Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853867

ABSTRACT

Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.

2.
Cancer Res ; 81(7): 1788-1801, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33483371

ABSTRACT

CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide. Here we characterize the in vivo activities of iNKT cell-specific BiTEs and assess their efficacy for cancer immunotherapy in mouse models using transplantable colorectal cancer or melanoma tumor lines engineered to express human Her2 as a tumor-associated antigen. Systemic administration of conjugated BiTEs stimulated multiple iNKT cell effector functions including cytokine release, secondary activation of NK cells, and induction of dendritic cell maturation and also initiated epitope spreading for tumor-specific CD8+ cytolytic T-cell responses. The antitumor effects of iNKT-cell activation with conjugated BiTEs were further enhanced by simultaneous checkpoint blockade with antibodies to CTLA-4, providing a potential approach for combination immunotherapy. Multiple injections of covalently stabilized iNKT cell-specific BiTEs activated iNKT cells without causing iNKT cell anergy or exhaustion, thus enabling repeated administration for effective and nontoxic cancer immunotherapy regimens. SIGNIFICANCE: Covalently stabilized conjugates that engage the antigen receptors of iNKT cells and target a tumor antigen activate potent antitumor immunity without induction of anergy or depletion of the responding iNKT cells.


Subject(s)
Antigens, CD1d/pharmacology , Clonal Anergy/drug effects , Galactosylceramides/pharmacology , Immunotherapy/methods , Natural Killer T-Cells/drug effects , Animals , Antigens, CD1d/chemistry , Antigens, CD1d/immunology , Clonal Anergy/immunology , Female , Galactosylceramides/chemistry , Humans , Immunoconjugates/pharmacology , Lymphocyte Activation/drug effects , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Tumor Cells, Cultured
3.
J Immunol ; 205(2): 425-437, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32513849

ABSTRACT

The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.


Subject(s)
Acyltransferases/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , Ebola Vaccines/immunology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Mycobacterium bovis/immunology , Viral Envelope Proteins/immunology , Acyltransferases/genetics , Animals , Antibodies, Viral/metabolism , Antibody Formation , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Disease Models, Animal , Ebola Vaccines/genetics , Female , Humans , Immunoglobulin G/blood , Lymphocyte Activation , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics , Viral Envelope Proteins/genetics
4.
Immunohorizons ; 3(5): 161-171, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31356170

ABSTRACT

During Ag priming, naive CD4+ T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4+ T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3-secreting CD4+ T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood. Most IL-3-producing T cells coexpressed GM-CSF and other cytokines that define multifunctionality. Generation of IL-3-secreting T cells in vitro was dependent on IL-1 family cytokines and was inhibited by cytokines that induce canonical Th1 or Th2 cells. Our results identify IL-3-secreting CD4+ T cells as a potential functional subset that arises during priming of naive T cells in specific tissue locations.


Subject(s)
Interleukin-3/biosynthesis , Mucous Membrane/microbiology , Skin/microbiology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Herpes Genitalis/virology , Herpesvirus 2, Human/immunology , Listeria monocytogenes/immunology , Listeriosis/microbiology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mucous Membrane/immunology , Mucous Membrane/virology , Mycobacterium bovis/immunology , Skin/immunology , Skin/virology , Tuberculosis/microbiology
5.
J Immunol ; 201(12): 3604-3616, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30455402

ABSTRACT

Effective subunit vaccines require the incorporation of adjuvants that stimulate cells of the innate immune system to generate protective adaptive immune responses. Pattern recognition receptor agonists are a growing class of potential adjuvants that can shape the character of the immune response to subunit vaccines by directing the polarization of CD4 T cell differentiation to various functional subsets. In the current study, we applied a high-throughput in vitro screen to assess murine CD4 T cell polarization by a panel of pattern recognition receptor agonists. This identified lipopeptides with TLR2 agonist activity as exceptional Th1-polarizing adjuvants. In vivo, we demonstrated that i.v. administration of TLR2 agonists with Ag in mice replicated the findings from in vitro screening by promoting strong Th1 polarization. In contrast, TLR2 agonists inhibited priming of Th1 responses when administered cutaneously in mice. This route-specific suppression was associated with infiltrating CCR2+ cells in the skin-draining lymph nodes and was not uniquely dependent on any of the well characterized subsets of dendritic cells known to reside in the skin. We further demonstrated that priming of CD4 T cells to generate Th1 effectors following immunization with the Mycobacterium bovis bacillus Calmette-Guérin (BCG) strain, a lipoprotein-rich bacterium recognized by TLR2, was dependent on the immunization route, with significantly greater Th1 responses with i.v. compared with intradermal administration of BCG. A more complete understanding of route-dependent TLR2 responses may be critical for informed design of novel subunit vaccines and for improvement of BCG and other vaccines based on live-attenuated organisms.


Subject(s)
Monocytes/immunology , Mycobacterium bovis/immunology , Receptors, CCR2/metabolism , Skin/immunology , Th1 Cells/immunology , Toll-Like Receptor 2/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cell Movement , Cells, Cultured , Drug Administration Routes , Female , Immune Tolerance , Immunization , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Receptors, CCR2/genetics , Repressor Proteins/genetics , Vaccination
6.
J Immunol ; 199(7): 2596-2606, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28821584

ABSTRACT

Analysis of Ag-specific CD4+ T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4+ T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4+ T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4+ T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154+ cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4+ CD154+ cells was distinct from that of CD154- cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4+ T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4+ T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD40 Ligand/genetics , Gene Expression Profiling/methods , Lymphocyte Activation , Mycobacterium bovis/immunology , Animals , Antigens, Bacterial/immunology , CD40 Ligand/analysis , CD40 Ligand/deficiency , Cytokines/biosynthesis , Cytokines/immunology , Epitopes , Interleukin-3/biosynthesis , Interleukin-3/immunology , Mice , Vaccination
7.
Chem Phys Lipids ; 194: 49-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26496152

ABSTRACT

Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d-presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these "stabilized" CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the outcome of iNKT cell mediated responses.


Subject(s)
Antigens, CD1d/metabolism , Endosomes/chemistry , Endosomes/metabolism , Glycolipids/metabolism , Animals , Antigens, CD1d/chemistry , Cell Line , Dendritic Cells/cytology , Dendritic Cells/metabolism , Female , Glycolipids/chemistry , Hydrogen-Ion Concentration , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Spleen/cytology , Spleen/metabolism , Transcriptional Activation
8.
Chem Phys Lipids ; 191: 75-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26306469

ABSTRACT

Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d-presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these "stabilized" CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the outcome of iNKT cell mediated responses.


Subject(s)
Antigens, CD1d/metabolism , Glycolipids/metabolism , Natural Killer T-Cells/metabolism , Animals , Antigens, CD1d/chemistry , Antigens, CD1d/genetics , Cell Line , Endosomes/chemistry , Endosomes/metabolism , Female , Glycolipids/chemistry , Hydrogen-Ion Concentration , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Natural Killer T-Cells/cytology , Natural Killer T-Cells/immunology , Transcriptional Activation
9.
J Neurosci ; 34(49): 16320-35, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25471571

ABSTRACT

Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNß injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination.


Subject(s)
Axons/drug effects , Demyelinating Diseases/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/therapeutic use , Interferon-beta/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Axons/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Inflammation Mediators/metabolism , Infusions, Intraventricular , Injections, Subcutaneous , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Interferon-beta/administration & dosage , Male , Mice , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Oligodendroglia/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Spinal Cord/immunology
10.
Microbes Infect ; 16(4): 337-44, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24486184

ABSTRACT

Chagasic cardiomyopathy caused by Trypanosoma cruzi is a major health concern in Latin America and among immigrant populations in non-endemic areas. T. cruzi has a high affinity for host lipoproteins and uses the low density lipoprotein receptor (LDLr) for invasion. Herein, we report that T. cruzi infection is associated with an accumulation of LDL and cholesterol in tissues in both acute and chronic murine Chagas disease. Similar findings were observed in tissue samples from a human case of Chagasic cardiomyopathy. T. cruzi infection of cultured cells displayed increased invasion with increasing cholesterol levels in the medium. Studies of infected host cells demonstrated alterations in their cholesterol regulation. T. cruzi invasion/infection via LDLr appears to be involved in changes in intracellular cholesterol homeostasis. The observed changes in intracellular lipids and associated oxidative stress due to these elevated lipids may contribute to the development of Chagasic cardiomyopathy.


Subject(s)
Chagas Disease/pathology , Chagas Disease/parasitology , Cholesterol/analysis , Cytoplasm/chemistry , Trypanosoma cruzi/physiology , Animals , Disease Models, Animal , Humans , Lipoproteins, LDL/analysis , Male , Mice , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...