Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 40(1): 2-13, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35511862

ABSTRACT

The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Motor Neuron Disease , Muscular Atrophy, Spinal , Activities of Daily Living , Amyotrophic Lateral Sclerosis/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Motor Neuron Disease/drug therapy , Motor Neuron Disease/pathology , Motor Neurons/pathology , Muscular Atrophy, Spinal/pathology
2.
ACS Med Chem Lett ; 11(1): 56-64, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31938464

ABSTRACT

The HDAC inhibitor 4-tert-butyl-N-(4-(hydroxycarbamoyl)phenyl)benzamide (AES-350, 51) was identified as a promising preclinical candidate for the treatment of acute myeloid leukemia (AML), an aggressive malignancy with a meagre 24% 5-year survival rate. Through screening of low-molecular-weight analogues derived from the previously discovered novel HDAC inhibitor, AES-135, compound 51 demonstrated greater HDAC isoform selectivity, higher cytotoxicity in MV4-11 cells, an improved therapeutic window, and more efficient absorption through cellular and lipid membranes. Compound 51 also demonstrated improved oral bioavailability compared to SAHA in mouse models. A broad spectrum of experiments, including FACS, ELISA, and Western blotting, were performed to support our hypothesis that 51 dose-dependently triggers apoptosis in AML cells through HDAC inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL
...