Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: mdl-34589542

ABSTRACT

BACKGROUND: Hyperpolarised gas magnetic resonance imaging (MRI) can be used to assess ventilation patterns. Previous studies have shown the image-derived metric of ventilation defect per cent (VDP) to correlate with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1 in asthma. OBJECTIVES: The aim of this study was to explore the utility of hyperpolarised xenon-129 (129Xe) ventilation MRI in clinical care and examine its relationship with spirometry and other clinical metrics in people seen in a severe asthma service. METHODS: 26 people referred from a severe asthma clinic for MRI scanning were assessed by contemporaneous 129Xe MRI and spirometry. A subgroup of 18 patients also underwent reversibility testing with spirometry and MRI. Quantitative MRI measures of ventilation were calculated, VDP and the ventilation heterogeneity index (VHI), and compared to spirometry, Asthma Control Questionnaire 7 (ACQ7) and blood eosinophil count. Images were reviewed by a multidisciplinary team. RESULTS: VDP and VHI correlated with FEV1, FEV1/FVC and forced expiratory flow between 25% and 75% of FVC but not with ACQ7 or blood eosinophil count. Discordance of MRI imaging and symptoms and/or pulmonary function tests also occurred, prompting diagnostic re-evaluation in some cases. CONCLUSION: Hyperpolarised gas MRI provides a complementary method of assessment in people with difficult to manage asthma in a clinical setting. When used as a tool supporting clinical care in a severe asthma service, occurrences of discordance between symptoms, spirometry and MRI scanning indicate how MRI scanning may add to a management pathway.

2.
J Cardiovasc Magn Reson ; 20(1): 78, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30501639

ABSTRACT

BACKGROUND: Native T1 may be a sensitive, contrast-free, non-invasive cardiovascular magnetic resonance (CMR) marker of myocardial tissue changes in patients with pulmonary artery hypertension. However, the diagnostic and prognostic value of native T1 mapping in this patient group has not been fully explored. The aim of this work was to determine whether elevation of native T1 in myocardial tissue in pulmonary hypertension: (a) varies according to pulmonary hypertension subtype; (b) has prognostic value and (c) is associated with ventricular function and interaction. METHODS: Data were retrospectively collected from a total of 490 consecutive patients during their clinical 1.5 T CMR assessment at a pulmonary hypertension referral centre in 2015. Three hundred sixty-nine patients had pulmonary hypertension [58 ± 15 years; 66% female], an additional 39 had pulmonary hypertension due to left heart disease [68 ± 13 years; 60% female], 82 patients did not have pulmonary hypertension [55 ± 18; 68% female]. Twenty five healthy subjects were also recruited [58 ±4 years); 51% female]. T1 mapping was performed with a MOdified Look-Locker Inversion Recovery (MOLLI) sequence. T1 prognostic value in patients with pulmonary arterial hypertension was assessed using multivariate Cox proportional hazards regression analysis. RESULTS: Patients with pulmonary artery hypertension had elevated T1 in the right ventricular (RV) insertion point (pulmonary hypertension patients: T1 = 1060 ± 90 ms; No pulmonary hypertension patients: T1 = 1020 ± 80 ms p < 0.001; healthy subjects T1 = 940 ± 50 ms p < 0.001) with no significant difference between the major pulmonary hypertension subtypes. The RV insertion point was the most successful T1 region for discriminating patients with pulmonary hypertension from healthy subjects (area under the curve = 0.863) however it could not accurately discriminate between patients with and without pulmonary hypertension (area under the curve = 0.654). T1 metrics did not contribute to prediction of overall mortality (septal: p = 0.552; RV insertion point: p = 0.688; left ventricular free wall: p = 0.258). Systolic interventricular septal angle was a significant predictor of T1 in patients with pulmonary hypertension (p < 0.001). CONCLUSIONS: Elevated myocardial native T1 was found to a similar extent in pulmonary hypertension patient subgroups and is independently associated with increased interventricular septal angle. Native T1 mapping may not be of additive value in the diagnostic or prognostic evaluation of patients with pulmonary artery hypertension.


Subject(s)
Hypertension, Pulmonary/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Hemodynamics , Humans , Hypertension, Pulmonary/mortality , Hypertension, Pulmonary/physiopathology , Male , Middle Aged , Predictive Value of Tests , Prognosis , Retrospective Studies , Ventricular Function, Left , Ventricular Function, Right , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...