Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(6): e0252687, 2021.
Article in English | MEDLINE | ID: mdl-34115762

ABSTRACT

BACKGROUND: Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. METHODS: We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. RESULTS: SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on VeroE6 cells was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. CONCLUSION: eNAT and similar guanidinium thiocyanate-based media may be of value for transport, stabilization, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Guanidine/pharmacology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Saliva/drug effects , Saliva/virology , Specimen Handling/methods , Virus Inactivation/drug effects , Animals , COVID-19/virology , Chlorocebus aethiops , Culture Media , Healthy Volunteers , Humans , RNA, Viral/genetics , Vero Cells
2.
medRxiv ; 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33501462

ABSTRACT

BACKGROUND: Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. METHODS: We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream RT-PCR testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. RESULTS: SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log 10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on vero-E6 cell lines was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. CONCLUSION: eNAT and similar guanidinium thiocyanate-based media may be of value for transport, preservation, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.

3.
J Mol Evol ; 61(2): 253-63, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15999246

ABSTRACT

Experimental evolution methods can be used to address and illuminate issues central to the understanding of evolutionary theory. One of the most powerful of these methods involves the in vitro evolution of nucleic acid enzymes, taking advantage of the direct relationship between the genotype of a nucleic acid sequence and the phenotype of its associated catalytic function. This review and commentary focuses on the past, present, and future potential of systems for the continuous in vitro evolution of nucleic acid enzymes as tools for modeling evolutionary processes in biology. It offers a candid appraisal of both the strengths and the limitations of these systems.


Subject(s)
Directed Molecular Evolution/methods , Directed Molecular Evolution/standards , Directed Molecular Evolution/trends , Ligases/genetics , Ligases/metabolism , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/classification , RNA, Catalytic/genetics , RNA, Catalytic/metabolism
4.
Mol Biol Evol ; 21(2): 314-20, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14660697

ABSTRACT

We have compared the kinetic properties (Michaelis-Menten constant [K(m)] and catalytic rate constant [k(cat)]) and amino acid sequences of orthologs of lactate dehydrogenase-A (A(4)-LDH) from congeners of Pacific damselfishes (genus Chromis) native to cold-temperate and tropical habitats to elucidate mechanisms of enzymatic adaptation to temperature. Specifically, we determined whether the sites of adaptive variation and the types of amino acids involved in substitutions at these sites were similar in the Chromis orthologs and other orthologs of warm-adapted and cold-adapted A(4)-LDH previously studied. We report striking evolutionary convergence in temperature adaptation of this protein and present further support for the hypothesis that enzyme adaptation to temperature involves subtle amino acid changes at a few sites that affect the mobility of the portions of the enzyme that are involved in rate-determining catalytic conformational changes. We tested the predicted effects of differences in sequence using site-directed mutagenesis. A single amino acid substitution in a key hinge region of the A(4)-LDH molecule is sufficient to change the kinetic characteristics of a temperate A(4)-LDH to that of a tropical ortholog. This substitution is at the same location that was identified in previous studies of adaptive variation in A(4)-LDH and was hypothesized to be important in adjusting K(m) and k(cat). Our results suggest that certain sites within an enzyme, notably those that establish the energy changes associated with rate-limiting movements of protein structure during catalysis, are "hot spots" of adaptation and that common types of amino acid substitutions occur at these sites to adapt structural "flexibility" and kinetic properties. Thus, despite the wide array of options that proteins have to adjust their structural stabilities in the face of thermal stress, the adaptive changes that couple "flexibility" to alterations of function may be limited in their diversity.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Fishes/genetics , Fishes/metabolism , L-Lactate Dehydrogenase/genetics , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Enzyme Stability/genetics , Kinetics , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Denaturation/genetics , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Sequence Homology, Amino Acid , Temperature
5.
Science ; 300(5622): 1135-7, 2003 May 16.
Article in English | MEDLINE | ID: mdl-12750518

ABSTRACT

Although pairs of species often interact over broad geographic ranges, few studies have explored how interactions vary across these large spatial scales. Surveys along 1500 kilometers of the Pacific coast of North America documented marked variation in the frequency of predation by the snail Nucella canaliculata on the intertidal mussel Mytilus californianus. Laboratory rearing experiments suggest that regional differences in drilling behavior have a genetic basis, and mitochondrial sequence variation confirms that gene flow is low among these snail populations. Marine communities separated by hundreds of kilometers may have intrinsically different dynamics, with interactions shaped by restricted gene flow and spatially varying selection.


Subject(s)
Bivalvia/physiology , Predatory Behavior , Snails/physiology , Animals , California , Ecosystem , Genetic Variation , Genetics, Population , Pacific Ocean , Selection, Genetic , Washington
6.
Mol Biol Evol ; 20(1): 105-10, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12519912

ABSTRACT

There is a long-standing debate in molecular evolution concerning the putative importance of GC content in adapting the thermal stabilities of DNA and RNA. Most studies of this relationship have examined broad-scale compositional patterns, for example, total GC percentages in genomes and occurrence of GC-rich isochores. Few studies have systematically examined the GC contents of individual orthologous genes from differently thermally adapted species. When this has been done, the emphasis has been on comparing large numbers of genes in only a few species. We have approached the GC-adaptation temperature hypothesis in a different manner by examining patterns of base composition of genes encoding lactate dehydrogenase-A (ldh-a) and alpha-actin (alpha-actin) from 51 species of vertebrates whose adaptation temperatures ranged from -1.86 degrees C (Antarctic fishes) to approximately 45 degrees C (desert reptile). No significant positive correlation was found between any index of GC content (GC content of the entire sequence, GC content of the third codon position [GC(3)], and GC content at fourfold degenerate sites [GC(4)]) and any index of adaptation temperature (maximal, mean, or minimal body temperature). For alpha-actin, slopes of regression lines for all comparisons did not differ significantly from zero. For ldh-a, negative correlations between adaptation temperature and total GC content, GC(3), and GC(4) were observed but were shown to be due entirely to phylogenetic influences (as revealed by independent contrast analyses). This comparison of GC content across a wide range of ectothermic ("cold-blooded") and endothermic ("warm-blooded") vertebrates revealed that frogs of the genus Xenopus, which have commonly been used as a representative cold-blooded species, in fact are outliers among ectotherms for the alpha-actin analyses, raising concern about the appropriateness of choosing these amphibians as representative of ectothermic vertebrates in general. Our study indicates that, whereas GC contents of isochores may show variation among different classes of vertebrates, there is no consistent relationship between adaptation temperature and the percentage of thermal stability-enhancing G + C base pairs in protein-coding genes.


Subject(s)
Actins/genetics , Base Composition , Body Temperature , Isoenzymes/genetics , L-Lactate Dehydrogenase/genetics , Animals , DNA/chemistry , DNA/genetics , Evolution, Molecular , Lactate Dehydrogenase 5
7.
Evolution ; 52(4): 1135-1146, 1998 Aug.
Article in English | MEDLINE | ID: mdl-28565219

ABSTRACT

The concept of species flocks has been central to previous interpretations of patterns and processes of explosive species radiations within several groups of freshwater fishes. Here, molecular phytogenies of species-rich Sebastes rockfishes from the northeastern Pacific Ocean were used to test predictions of null theoretical models that assume random temporal placements of phylogenetic nodes. Similar appraisals were conducted using molecular data previously published for particular cichlid fishes in Africa that epitomize, by virtue of a rapid and recent radiation of species, the traditional concept of an intralacustrine "species flock." As gauged by the magnitudes of genetic divergence in cytochrome b sequences from mitochondrial DNA, as well as in allozymes, most speciation events in the Sebastes complex were far more ancient than those in the cichlids. However, statistical tests of the nodal placements in the Sebastes phylogeny suggest that speciation events in the rockfishes were temporally nonrandom, with significant clustering of cladogenetic events in time. Similar conclusions also apply to an ancient complex of icefishes (within the Notothenioidei) analyzed in the same fashion. Thus, the rockfishes (and icefishes) may be interpreted as ancient species flocks in the marine realm. The analyses exemplified in this report introduce a conceptual and operational approach for extending the concept of species flocks to additional environmental settings and evolutionary timescales.

SELECTION OF CITATIONS
SEARCH DETAIL
...